GOUGHER --- college -----

GOLDSMITH INTERFAITH CENTER AT GOUCHER COLLEGE

1021 DULANEY VALLEY RD BALTIMORE MD 21204

50% CONSTRUCTION DOCUMENTS

APRIL 28, 2017 AYERS SAINT GROSS PROJECT NUMBER: 21641.00

ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER

MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

STRUCTURAL ENGINEER

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

CIVIL ENGINEER

WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

IT / AV / SECURITY

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

COMMISSIONING

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 **TOWSON, MD 21204** 410.494.1111 www.kibart.com


CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

		DRAWING LIS
	SHEET NUMBER	SHEET
	NUIVIDER	SHEET
	A0.00	COVER SHEET
		-
	C0.01	EXISTING CONDITIONS PLAN
	C1.01	DEMOLITION PLAN
	C2.01	SITE PLAN
	C2.02	UTILITY PROFILES
	C3.01	STORMWATER MANAGEMENT PLA
	C3.02	STORMWATER MANAGEMENT DET
	C4.01	EROSION AND SEDIMENT CONTRO
	C4.02	EROSION AND SEDIMENT CONTRO
	C4.03	EROSION AND SEDIMENT CONTRO
	L1.00	MATERIALS PLAN
	L2.00	SECTIONS AND ELEVATIONS
	L3.00	PLANTING PLAN
	L4.00	DETAILS
	L4.01	DETAILS
		-
	S1.00	FOUNDATION AND LOWER LEVEL
	S1.01	GROUND LEVEL FRAMING PLAN
	S1.02	LEVEL 2 FRAMING PLAN
	S1.03	ROOF FRAMING PLAN
	S2.01	FOUNDATION DETAILS AND GENER
	S2.02	FOUNDATION DETAILS
	S2.03	FOUNDATION DETAILS
	S3.01	TYPICAL STEEL DETAILS
	S3.02	TYPICAL WOOD FRAMING DETAILS
	S3.03	TYPICAL WOOD FRAMING DETAILS
	S3.04 S4.01	FLOOR FRAMING DETAILS TYPICAL ROOF DETAILS
	S4.01 S4.02	ROOF DETAILS
	S4.02	ROOF DETAILS
	S5.01	LIST OF SPECIAL INSPECTIONS
1		-
	A0.10	ABBREVIATIONS AND SYMBOLS
	A0.20	CODE SUMMARY & EGRESS PLANS
	A1.00	ARCHITECTURAL SITE PLAN
	A1.10 A2.00	SELECTIVE DEMOLITION PLANS FLOOR PLAN - LOWER LEVEL & LE
	A2.00	FLOOR PLAN - LEVEL 2 & ROOF
	A2.11	ENLARGED PLANS - INTERFAITH C
	A3.10	REFLECTED CEILING PLAN - LOWE
	A3.11	REFLECTED CEILING PLAN - LEVE
	A4.01	BUILDING ELEVATIONS
	A4.10	BUILDING SECTIONS
	A5.01	WALL SECTIONS
	A5.02	
	A5.11 A6.00	EXTERIOR ASSEMBLIES STAIR AND ELEVATOR PLANS & SE
	A7.00	INTERIOR ELEVATIONS
	A7.01	INTERIOR ELEVATIONS
	A7.10	INTERIOR DETAILS
	A8.00	FINISH FLOOR PLANS
	A9.11	STOREFRONT DETAILS
	A9.20	PARTITION TYPES
	A9.30	FINISH SCHEDULE
ĺ	M0.10	LEGEND
	M0.10 M2.01	FLOOR PLAN - LOWER LEVEL - HV
	M2.01	FLOOR PLAN - GROUND LEVEL - H
	M2.02	FLOOR PLAN - LEVEL 2 - HVAC
	M3.01	MECHANICAL ROOM PART PLAN -
	M4.01	SCHEMATICS
	M5.01	DETAILS
	M5.02	DETAILS
	M5.03 M6.01	DETAILS SCHEDULES
	10.01	
	P2.00	FLOOR PLAN - FOUNDATION PLUN
	P2.01	FLOOR PLAN - LOWER LEVEL PLU
	P2.02	FLOOR PLANS - GROUND LEVEL -
	P2.03	FLOOR PLANS - LEVEL 2 - PLUMBI
	P5.01	DETAILS
	P6.01	SCHEDULES
1	E0.01	ELECTRICAL LEGEND
	E0.01 E2.01	FLOOR PLANS - LOWER LEVEL - EI
	E2.01	FLOOR PLANS - GROUND LEVEL -
	E2.02	FLOOR PLANS - LEVEL 2 - ELECTR
	E5.01	DETAILS
	E6.01	ONE LINE DIAGRAM & SCHEDULES
1		
	T0.10	TECHNOLOGY SYSTEMS NOTES, S
	T2.00	TECHNOLOGY SYSTEMS FLOOR P
	T2.01 T2.02	TECHNOLOGY SYSTEMS FLOOR P TECHNOLOGY SYSTEMS FLOOR P
	T3.00	TECHNOLOGY SYSTEMS FLOOR P
	T3.00	TECHNOLOGY SYSTEMS REFLECT
	T3.02	TECHNOLOGY SYSTEMS REFLECT
	T4.00	TECHNOLOGY SYSTEMS - AV DET
	T4.01	TECHNOLOGY SYSTEMS - SECURI
	T4.02	TECHNOLOGY SYSTEMS - TELECO

BY DEFINITION PROGRESS PRINTS ARE INCOMPL DESCRIBE SCOPE OF MATERIALS, FINISHES AND NG INTENT OF FINISHED FACILITY. COORDINATION BETWEEN VARIOUS SYSTEMS REMAIN TO BE FULLY EVALUATED AND RESOLVED. ANY USE OF THESE DOCUMENTS FOR PRICING OF A FINISHED PROJECT MUST MAKE ALLOWANCE FOR ADJUSTMENTS IN LOCATION, ALIGNMENT, REASONABLE QUANTITY ALTERATIONS, AND COMPLIANCE WITH MANUFACTURER WARRANTY REQUIREMENTS AND INSTALLATION REQUIREMENTS

Т
ΓΝΑΜΕ
AN
TAILS OL PLAN OL NOTES OL DETAILS
PLAN
RAL NOTES
S S
S
EVEL 1
CENTER LEVEL 2 & CHAPEL ER LEVEL & LEVEL 1 EL 2 & CHAPEL
ECTIONS
AC IVAC
LOWER LEVEL - HVAC
/BING JMBING
PLUMBING NG
ELECTRICAL ELECTRICAL RICAL
S
SYMBOLS, AND ABBREVIAIONS PLAN - LOWER LEVEL
PLAN - LEVEL 1 PLAN - LEVEL 2 TED CEILING PLAN - LOWER LEVEL
TED CEILING PLAN - LEVEL 1 TED CEILING PLAN - LEVEL 2 TAILS
ITY DETAILS OM CABLING DETAILS
ETE. EFFORTS HAVE BEEN MADE T ASSEMBLIES FOR UNDERSTANDIN
AND RESOLUTION OF INTERFACE

<u>W.B</u>	<u>.C.M. SUR\</u>	/EY TRAVER	<u>ISE CON</u>	ITROL LISTING
PT#	NORTHING	EASTING	ELEV.	DESCRIPTION
900	634,857.58	1,427,613.23	426.05	REBAR & CAP
907	634,822.80	1,427,408.39	433.45	REBAR & CAP
910	634,931.90	1,427,180.57	431.77	REBAR & CAP
911	635,042.54	1,427,385.67	426.70	REBAR & CAP

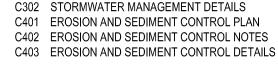
LE	GEND
BOLLARD/POST	\odot
BUSHES	
CLEAN OUT	○ c.o.
DRAIN INLET	
ELECTRIC BOX	□ E.B.
ELECTRIC CONDUIT	0 E.C.
ELECTRIC CONDON	(E)
ELECTRIC RISER	0 E.R.
FIRE HYDRANT	
	8
FIRE CONNECTION	
	O FP
	○ FD
OBSERVATION WELL	(OBS) GV
GAS VALVE	SV SV
HAND BOX	⊠ н.в.
PARKING METER	© P.M.
POWER POLE	
PROPERTY MON.	O 600
ROOF DRAIN	⊖ RD
SANITARY MH	S
SIGN (ONE-POST)	
SIGN (TWO POST)	
STEAM MH	(\mathbb{H})
STORM DRAIN MH	D
	¢
TELEPHONE MH	T o t.r.
TELEPHONE RISER	
TRAVERSE STATION	
TREES	10" 💥 🖓 12"
	\bigcirc
WATER MH WATER FOUNTAIN	\mathbb{W}
WATER FOUNTAIN	◦ W.F. -◯-
WELL	
MAJOR CONTOUR	500
MINOR CONTOUR	500
WALL	
BUILDING	
CONC. CURB	
CONC. PAD/WALK	
METAL PLATE	
SURVEY LIMITS	
FENCE LINE	X X X
WOODS LINE	
O/H ELECTRIC	OHE
U/G ELECTRIC	E
U/G GAS	G
U/G SANITARY	SS
U/G STEAM	ST
U/G STORM	D
U/G WATER	W

11

GENERAL NOTES

- 1. THIS PLAT IS BASED UPON A FIELD-RUN TOPOGRAPHIC SURVEY PERFORMED BY WBCM IN DECEMBER, 2016 AND REFLECTS SITE CONDITIONS AS OF THAT DATE.
- 2. COORDINATES AND DIRECTIONS SHOWN HEREON ARE REFERRED TO THE MERIDIAN OF THE MARYLAND STATE PLANE COORDINATE SYSTEM(NAD83) AS DETERMINED FROM REAL TIME KINEMATIC SURVEYING AS BROADCAST BY THE TOPCON NETWORK.
- BASE STATION LATITUDE 39° 30' 53.75862636" N LONGITUDE 76° 38' 36.25981219" W
- 3. ELEVATIONS SHOWN HEREON ARE REFERRED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88), AS DETERMINED BY R.T.K. G.P.S. OBSERVATONS AS BROADCASTED BY THE TOPCON NETWORK(WGS84). BASE STATION


ELEVATION = 125.50'


- 3. ADDITIONAL SPOT ELEVATIONS RESIDE IN THE ELECTRONIC VERSION OF THIS DRAWING BUT ARE NOT PLOTTED HEREON.
- 4. THE LOCATION OF EXISTING UNDERGROUND UTILITIES IS SHOWN IN AN APPROXIMATE WAY ONLY. THE DESCRIPTION OF THE UNDERGROUND UTILITIES AS SHOWN HEREON WERE BASED SOLEY UPON FIELD OBSERVATIONS AND HAVE NOT BEEN COMPARED TO OR VERIFIED WITH RECORD UTILITY DRAWINGS OR FIELD TEST PITS. THE SIZE, TYPE AND LOCATION OF THE UTILITY LINES SHOULD BE VERIFIED BY THE USER OF THIS DRAWING.
- 5. IT IS THE CONTRACTOR'S RESPONSIBILITY TO FIELD VERIFY ACTUAL SITE CONDITIONS PRIOR TO THE START OF ANY WORK. THERE IS NO WARRANTY OR GUARANTEE ON THE COMPLETENESS OR CORRECTNESS OF THE EXISTING CONDITION INFORMATION. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ARCHITECT/ENGINEER PRIOR TO THE START OF ANY WORK.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR NOTIFYING "MISS UTILITY" AT 1-800-257-7777 THREE DAYS PRIOR TO THE START OF ANY EXCAVATION WORK.
- 7. THE WORDS "CERTIFY" OR "CERTIFICATION" AS USED HEREON ARE UNDERSTOOD TO BE AN EXPRESSION OF PROFESSIONAL OPINION BY THE UNDERSIGNED SURVEYOR, BASED UPON HIS BEST KNOWLEDGE, INFORMATION, AND BELIEF. AS SUCH, IT DOES NOT CONSTITUTE A GUARANTEE NOR A WARRANTY, EXPRESSED OR IMPLIED.

----10 ----

CIVIL DRAWING INDEX

C001 EXISTING CONDITIONS PLAN

UTILITY SCHEDULE						
MH #	TOP	DIR.	INVERT	SIZE & TYPE		
I-3709	424,97	W	423.47	6″ PVC		
		S	424.37	12" RCP		
		N/W	423, 22	12" RCP		
U-3825	430, 41	MIS	C. UTIL PI	PES		
I-3985	421, 55	-	417.74	FLOOR		
			COVERE	ID W\TARP		
D-3999	424, 57	-	FILLED	W\DEBRIS		
D-4065	424,88	E	421,63	9″ MTL		
		W	421,38	9″ MTL		
S-4146	430, 80	N/E	426, 00	4″ MTL		
		N	420, 3			
		S	420, 2			
			FILLED	W\WATER		
S-4147	432, 43	N	421,43	8″		
		E	421.33	8″		
		E	421.32	8″		
		W	421.28	8″		
PNV = PIPES NOT VISIBLE						
NOTE: THE ABOVE INFORMATION REFLECT FIELD						
MEASUREMENTS & OBSERVATIONS AND THEY MAY						
DIFFER FROM PLANS BY OTHERS.(SEE GENERAL NOTES)						

9

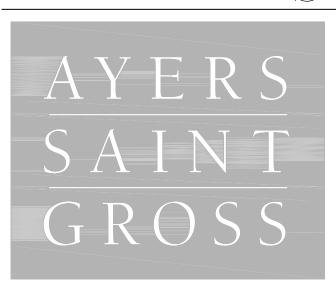
	AWING IS A F				
1"=20'-0"	20	0	10	20	40

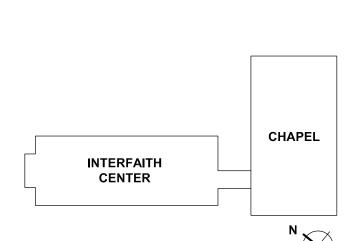
COORDINATES SHOWN HEREON ARE REFERRED TO THE MARYLAND STATE PLANE COORDINATE SYSTEM, NAD 83 (1991). ELEVATIONS SHOWN HEREON ARE REFERRED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

11

PLAN DRAWING NUMBER

EXISTING CONDITIONS


DRAWING NAME


PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS

DRAWING INFORMATION **ISSUE DATE:** 04/28/17 SCALE: 1" = 20' JOB NO.: 21641.00 DRAWN BY: M.L.H.

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

CODE CONSULTANT KOFFEL ASSOCIATES COLUMBIA, MD 21045 410.750.2246 www.koffel.com

410.494.1111 www.kibart.com 8815 CENTRE PARK DRIVE, SUITE 200

COMMISSIONING KIBART TOWSON, MD 21204

www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

HANOVER, MD 21076 410.712.0390

www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

BALTIMORE, MD 21230 410.347.8500

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

CIVIL ENGINEER WBCM BALTIMORE, MD 21286

www.morabitoconsultants.com 300 EAST JOPPA ROAD, SUITE 200

SPARKS, MD 21152 410.467.2377

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

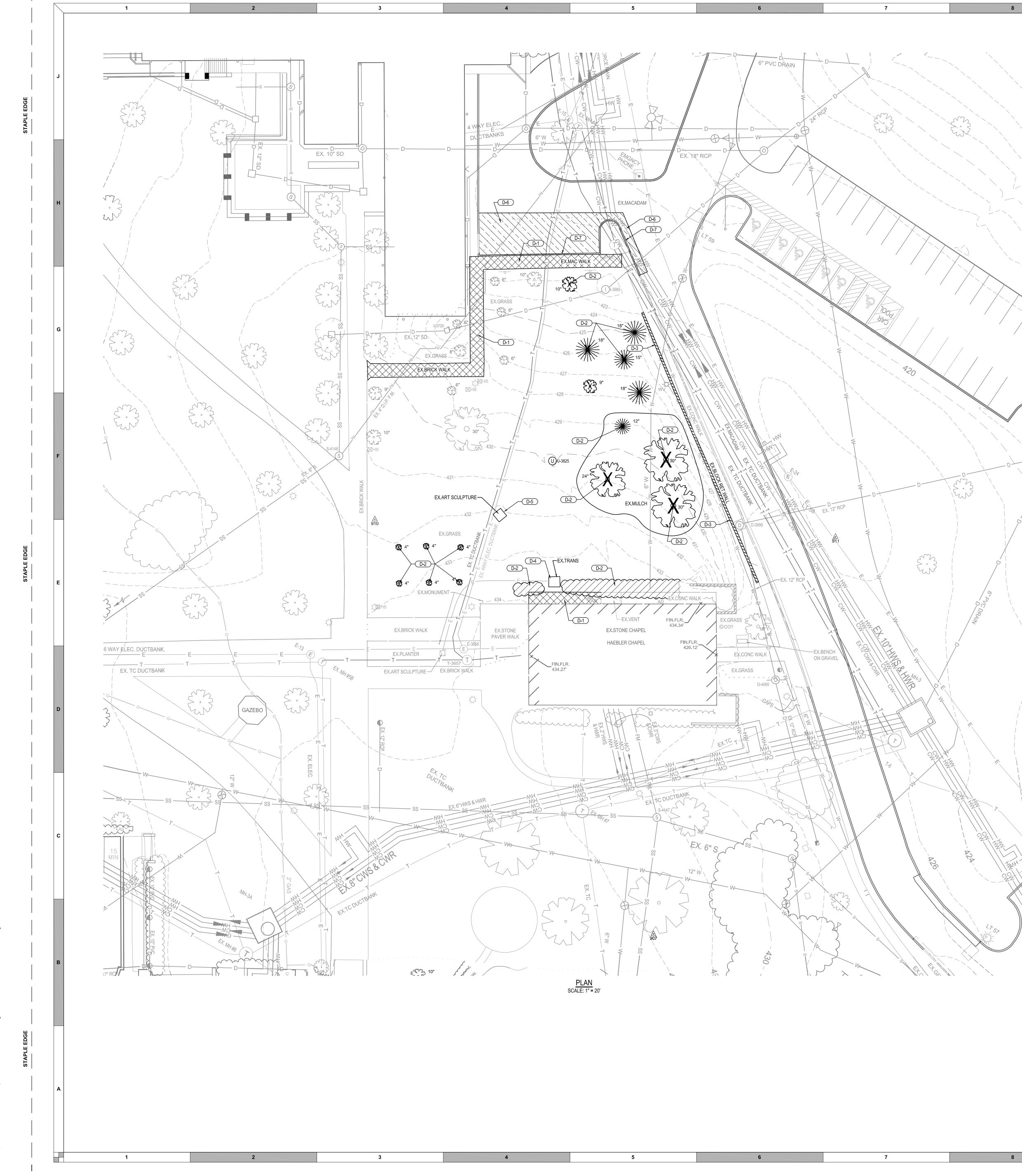
LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100

www.asg-architects.com

410.347.8500

BALTIMORE, MD 21230

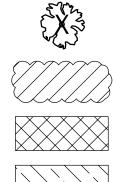

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

PROJECT TEAM ARCHITECT

GOLDSMITH INTERFAITH CENTER

> GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOUCHER —college—



DEMOLITION NOTES:

D-1	SAWCUT AND REMOVE EXISTING CONCRETE SIDEWALK
	TO THE NEAREST JOINT.

- D-2 REMOVE EXISTING TREES.
 D-3 REMOVE EXISTING BLOCK RETAINING WALL.
 D-4 REMOVE EXISTING TRANSFORMER.
 D-5 SCULPTURE TO BE RELOCATED, CONTRACTOR TO REMOVE AND STORE.
 D-6 SAWCUT AND REMOVE EXISTING PAVEMENT.
 D-7 SAWCUT AND REMOVE EXISTING CONCRETE CURB.

DEMOLITION LEGEND:

TREE REMOVAL

TREE REMOVAL

WALK REMOVAL

9

PAVEMENT REMOVAL

----10 ----

CAUTION: IF THIS DRAWING IS A REDUCTION, USE THE GRAPHIC SCALES. 1"=20'-0"

> COORDINATES SHOWN HEREON ARE REFERRED TO THE MARYLAND STATE PLANE COORDINATE SYSTEM, NAD 83 (1991). ELEVATIONS SHOWN HEREON ARE REFERRED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

> > 11

9

10 -----

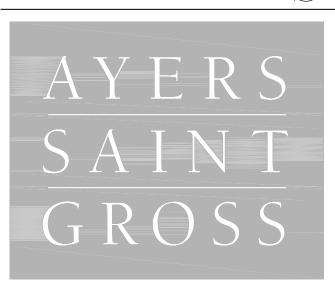
11

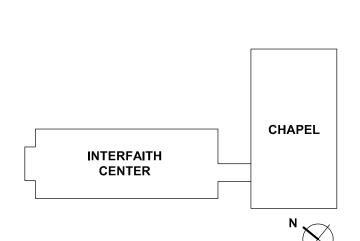
----8-----

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

DEMOLITION PLAN


DRAWING NAME


DRAWN BY:	M.L.H.
PROJECT DESIGN PHASE	
50% CONSTRUCTIO	N
DOCUMENTS	

DRAWING INFORMATION	
ISSUE DATE:	04/28/17
SCALE:	1" = 20'
JOB NO.:	21641.00
DRAWN BY:	M.L.H.

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

COMMISSIONING KIBART

www.spexsys.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

WBCM BALTIMORE, MD 21286

CIVIL ENGINEER

www.morabitoconsultants.com 300 EAST JOPPA ROAD, SUITE 200

410.467.2377

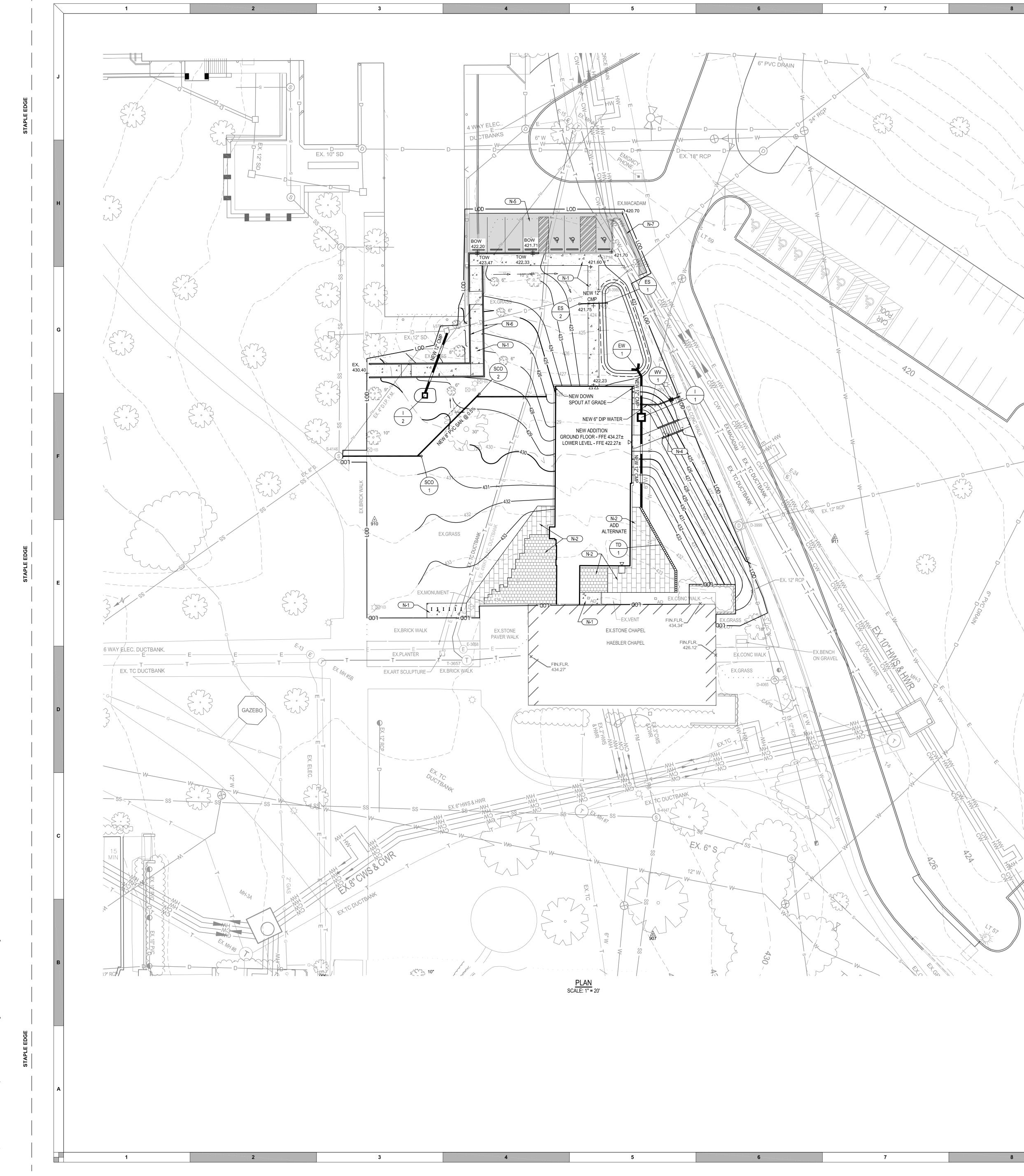
SPARKS, MD 21152

STRUCTURAL ENGINEER MORABITO CONSULTANTS

410.646.4500 www.muellerassoc.com 952 RIDGEBROOK ROAD, SUITE 1700

LINTHICUM, MD 21090

MUELLER ASSOCIATES

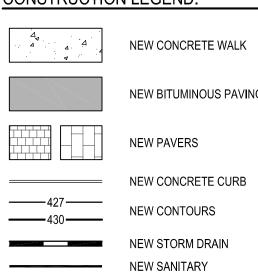

www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

BALTIMORE, MD 21230 410.347.8500

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

CENTER GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOLDSMITH INTERFAITH



CONSTRUCTION NOTES:

- N-1 NEW CONCRETE SIDEWALK, SEE LANDSCAPE PLANS FOR DETAIL. N-2 NEW PAVERS, SEE LANDSCAPE PLANS FOR DETAIL.N-3 NEW RETAINING WALL, SEE ARCHITECTURAL PLANS FOR DETAIL.

- N-4 NEW KETAINING WALL, SEE AKOMITEOTOKALTEANSTOR DETAIL.
 N-4 NEW STAIRS, SEE LANDSCAPE PLANS FOR DETAIL.
 N-5 NEW BITUMINOUS PAVING, SEE LANDSCAPE PLANS.
 N-6 NEW WALL, SEE LANDSCAPE PLANS FOR DETAIL.
 N-7 NEW 6" CONCRETE CURB, SEE LANDSCAPE PLANS FOR DETAIL.

CONSTRUCTION LEGEND:



NEW BITUMINOUS PAVING NEW PAVERS

NEW END WALL

----10 ----

CAUTION: IF THIS DRAWING IS A REDUCTION, USE THE GRAPHIC SCALES. 1"=20'-0"

> COORDINATES SHOWN HEREON ARE REFERRED TO THE MARYLAND STATE PLANE COORDINATE SYSTEM, NAD 83 (1991). ELEVATIONS SHOWN HEREON ARE REFERRED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

> > 11

9

NEW CONCRETE WALK

9

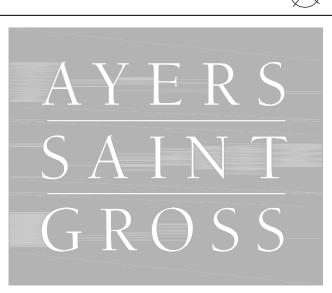
10 -----

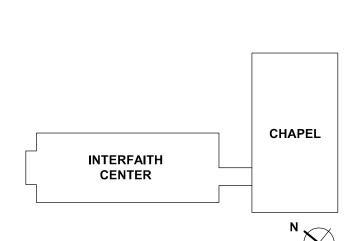
11

----8-----

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER


SITE PLAN


ISSUE DATE:	04/28/17			
SCALE:	1" = 20'			
JOB NO.:	21641.00			
DRAWN BY:	M.L.H.			
PROJECT DESIGN PHASE				
50% CONSTRUCTION DOCUMENTS				
DRAWING NAME				

NOT FOR CONSTRUCTION

DRAWING INFORMATION

ARCHITECTS + PLANNERS

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

TOWSON, MD 21204 410.494.1111 www.kibart.com

KIBART

COMMISSIONING 901 DULANEY VALLEY ROAD, SUITE 301

HANOVER, MD 21076 410.712.0390 www.spexsys.com

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

CIVIL ENGINEER WBCM BALTIMORE, MD 21286

www.morabitoconsultants.com

410.467.2377 300 EAST JOPPA ROAD, SUITE 200

SPARKS, MD 21152

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

LINTHICUM, MD 21090

MUELLER ASSOCIATES

M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

410.347.8500 www.asg-architects.com

BALTIMORE, MD 21230

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

PROJECT TEAM ARCHITECT

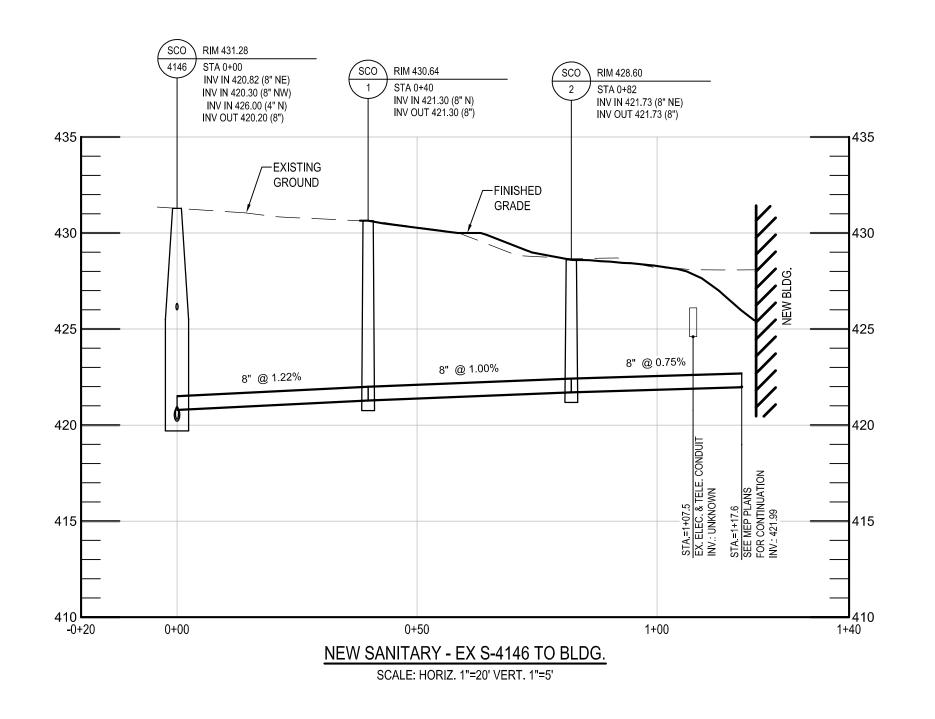
GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOLDSMITH INTERFAITH CENTER

GOUCHER —college—

			1	2	2	 3
		J				
STAPLE EDGE						
		н				
		G				
		F				
GE						
STAPLE EDGE		E				
		D				
		с				
		в				
STAPLE EDGE						
STAF		A				
	_		1	2	2	 3

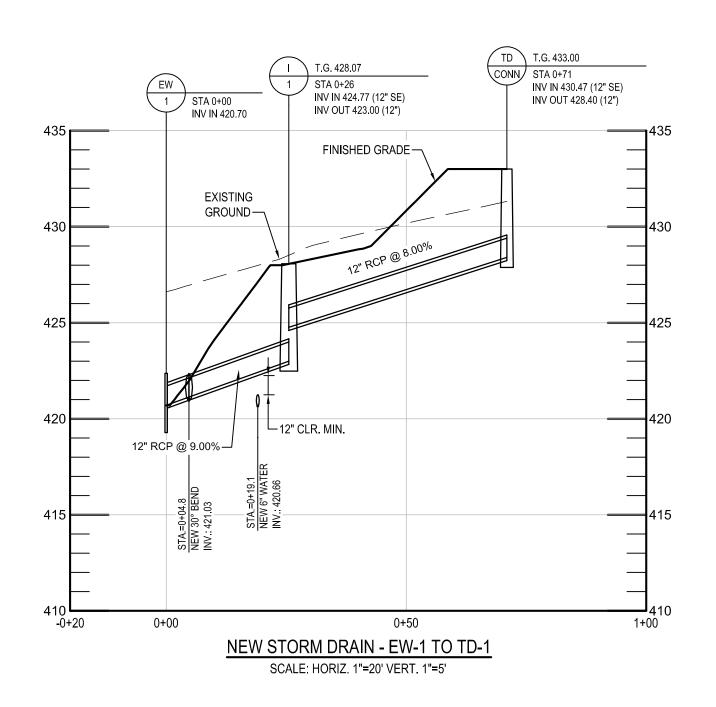
4

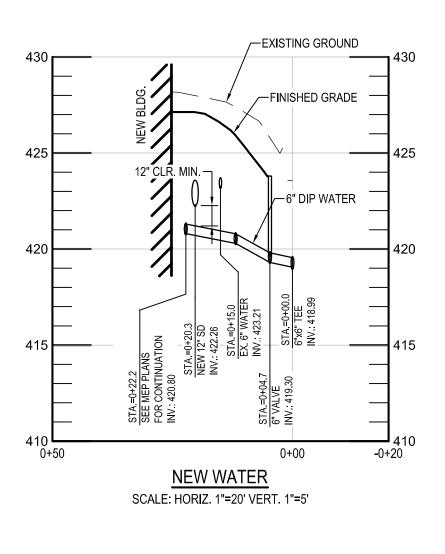

5

6----

6

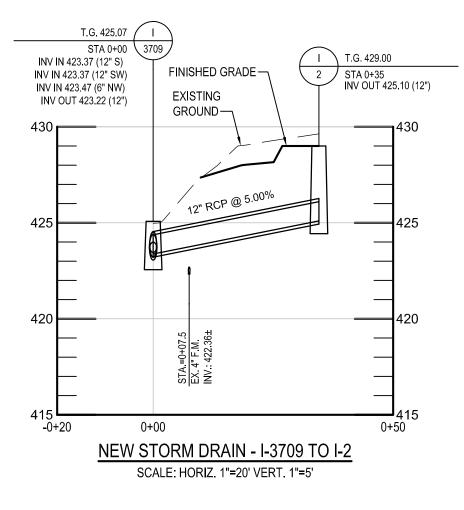
7


5

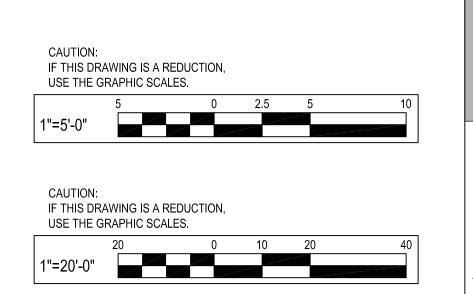

7

----8-----

9



8


10-----

11

----10----

9

COORDINATES SHOWN HEREON ARE REFERRED TO THE MARYLAND STATE PLANE COORDINATE SYSTEM, NAD 83 (1991). ELEVATIONS SHOWN HEREON ARE REFERRED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

11

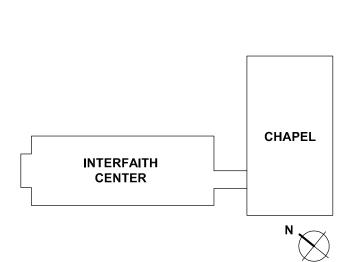
© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

UTILITY PROFILES

DRAWING NAME

PROJECT DESIGN PHASE DOCUMENTS


50% CONSTRUCTION

DRAWING INFORMATION **ISSUE DATE:** 04/28/17 SCALE: AS SHOWN JOB NO.: 21641.00 DRAWN BY: M.L.H.

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING KIBART TOWSON, MD 21204 410.494.1111

901 DULANEY VALLEY ROAD, SUITE 301

410.712.0390 www.spexsys.com

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

www.asg-architects.com IT / AV / SECURITY SPEXSYS

www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

WBCM BALTIMORE, MD 21286 410.512.4500

CIVIL ENGINEER

300 EAST JOPPA ROAD, SUITE 200

www.morabitoconsultants.com

410.467.2377

SPARKS, MD 21152

952 RIDGEBROOK ROAD, SUITE 1700

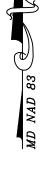
LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

MUELLER ASSOCIATES

410.347.8500 www.asg-architects.com

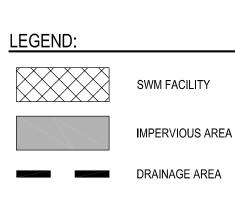
M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230


ARCHITECT

GOLDSMITH INTERFAITH CENTER

GOUCHER —college—



PROJECT NAME: INTERFAITH CENTER AT GOUCHER COLLEGE DESIGN / AS - BUILT DATA FOR BIORETENTION

DESIGN / AS - BUILT DATA FOR DIORETENTION				
* TO BE COMPLETED BY T	HE CERTIFYING ENGINEER			
TYPE OF FACILITY: M-6, BIORETENTION	BMP ID: BIORETENTION (M-6), FACILITY #1			
FEATURE	DESIGN	*AS-BUILT		
FILTER BED DIMENSIONS (L x W) *	42' x 14'			
FILTER BED AREA (min)	570 S.F.			
SIDE SLOPES	3:1			
FILTER BED SURFACE ELEVATION (TOP OF MULCH)	420.7			
ESD STORAGE ELEVATION	421.2			
10-YEAR FREEBOARD	.5'			
TOP OF EMBANKMENT ELEVATION	421.7			
TOP OF EMBANKMENT WIDTH	2'			
THICKNESS OF FILTER MEDIA SHA BSM	24"			
THICKNESS OF SAND LAYER	4"			
THICKNESS OF PEA GRAVEL LAYER	4"			
PLACEMENT OF GEOTEXTILE	SIDES ONLY			
UNDERDRAIN PIPE MATERIAL/SIZE	4" PVC			
THICKNESS OF GRAVEL UNDERDRAIN	1'			
PLANTINGS	SEE LANDSCAPE PLANS			
OBSERVATION WELL WITH DEPTH TO BOTTOM INDICATED ON CAP	OBS #1 (3.67')			
DATE AS-BUILT ACCEPTED BY COUNTY:				

11

*FACILITY IS NOT RECTANGULAR. DIMENSIONS ARE APPROXIMATE

----10----

9

CAUTION: IF THIS DRAWING IS A REDUCTION, USE THE GRAPHIC SCALES. 0 10 20

APPROVED:_ CHIEF STORMWATER ENGINEERING BALTO. CO. DEPT. OF ENVIRONMENTAL PROTECTION AND SUSTAINABILITY

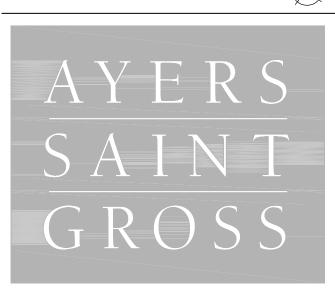
> COORDINATES SHOWN HEREON ARE REFERRED TO THE MARYLAND STATE PLANE COORDINATE SYSTEM, NAD 83 (1991). ELEVATIONS SHOWN HEREON ARE REFERRED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

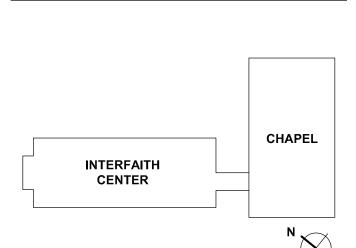
> > 11

40 |

MANAGEMENT PLAN DRAWING NUMBER

STORMWATER


DRAWING NAME


PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: 1" = 20' JOB NO.: 21641.00 DRAWN BY: M.L.H.

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301

www.spexsys.com

410.712.0390

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

410.347.8500 www.asg-architects.com

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

WBCM BALTIMORE, MD 21286

www.morabitoconsultants.com CIVIL ENGINEER

410.467.2377

300 EAST JOPPA ROAD, SUITE 200

952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152

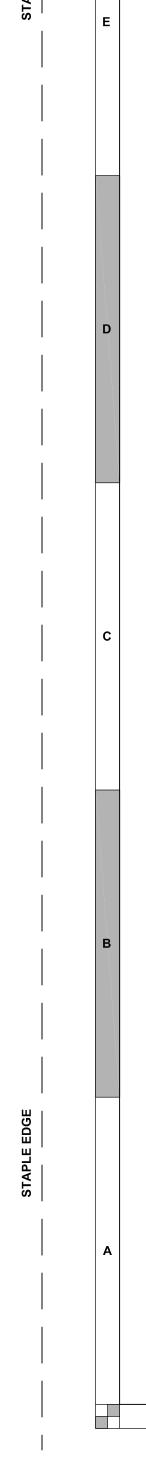
LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100

www.asg-architects.com

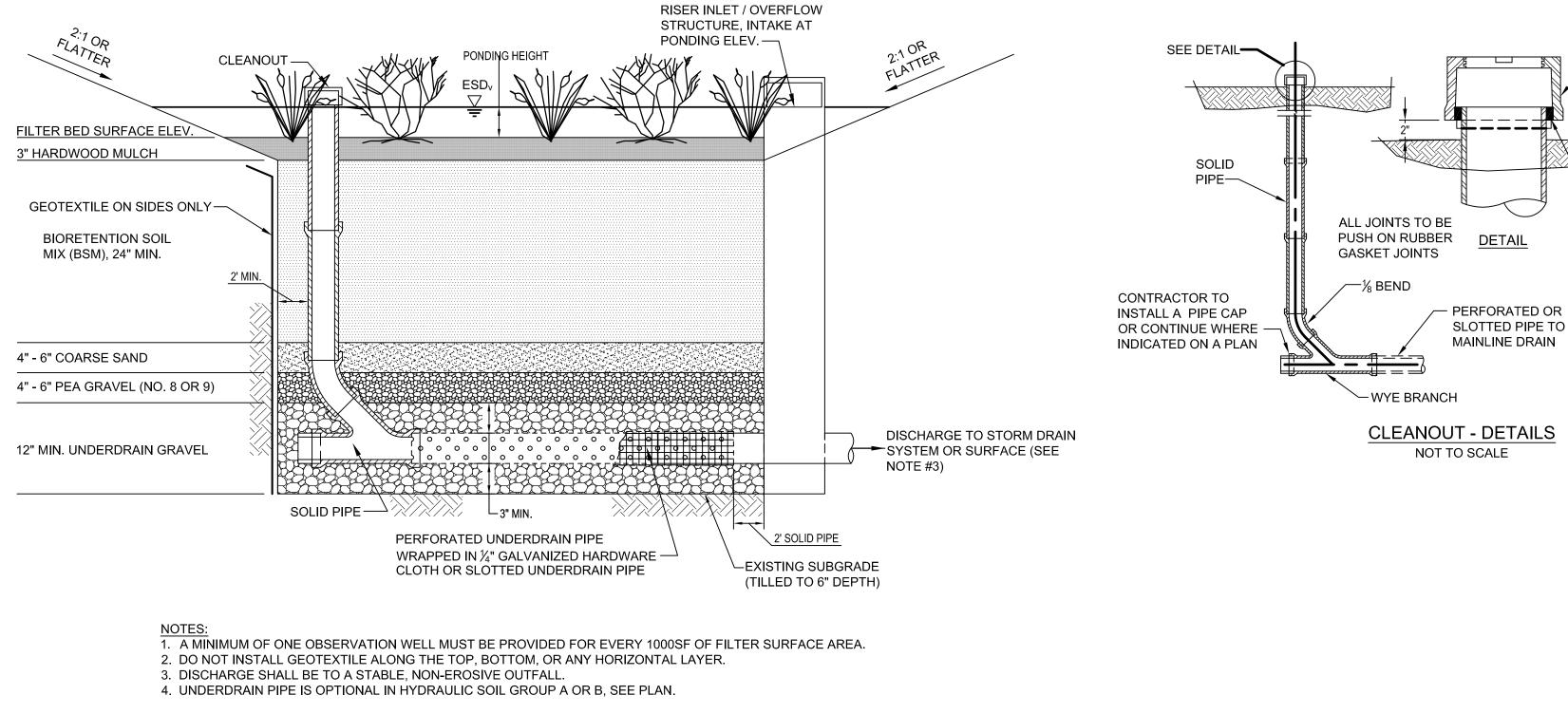
410.347.8500

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230


GOLDSMITH INTERFAITH CENTER

> GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

> > PROJECT TEAM


ARCHITECT

---2---

3

SECTION FOR MICRO-BIORETENTION WITH RISER

NOT TO SCALE

--4----

5

6 ----

7

1

2-----

3

5

6

2. THE CONTRACTOR SHALL SUBMIT SOIL TEST RESULTS (1 PER 30 CY OF BSM) TO THE ENGINEER FOR REVIEW AND APPROVAL PRIOR TO INSTALLATION. PERFORM SOIL TESTS FOR BOTH IMPORTED SOIL AND RE-USED / AMENDED TOP SOIL. SOIL TEST AND RESULTS SHALL INCLUDE AT A MINIMUM; PHOSPHORUS, ORGANIC MATTER, SOLUBLE SALTS, AND TEXTURAL ANALYSIS.

7

3. MINIMIZE COMPACTION OF SUBGRADE SOILS IN MICRO BIORETENTION AREAS. CONTRACTOR SHALL TILL THE SUBGRADE SOILS TO A DEPTH OF 6" BELOW THE BOTTOM OF EACH FACILITY. WHEN BACKFILLING THE MICRO BIORETENTION FACILITY, PLACE SOIL IN LIFTS 12" TO 18". DO NOT USE HEAVY EQUIPMENT WITHIN THE MICRO BIORETENTION BASIN. HEAVY EQUIPMENT CAN BE USED AROUND THE PERIMETER OF THE BASIN TO SUPPLY SOILS AND SAND. GRADE MICRO BIORETENTION MATERIALS WITH LIGHT EQUIPMENT SUCH AS A COMPACT LOADER OR A DOZER/LOADER WITH MARSH TRACKS.

4. PLANT MATERIAL SHALL BE REPRESENTATIVE OF SPECIES AND CONFORM TO THE AMERICAN STANDARD FOR NURSERY STOCK, ANSI Z60.1-2004. MATERIALS SPECIFICATIONS FOR MICRO-BIORETENTION

MATERIAL	SPECIFICATION	SIZE	NOTES
PLANTINGS	SEE PLAN SHEET	N/A	PLANTINGS ARE SITE SPECIFIC
BSM	SHA BIORETENTION SOIL MIX (BSM) SECTION 920.01.05 ORGANIC CONTENT MIN. 5% BY DRY WEIGHT (ASTM D 2974)	N/A	MARYLAND STATE HIGHWAY ADMINISTRATION STANDARDS SPECIFICATIONS FOR CONSTRUCTION AND MATERIALS DATED JULY 2008 INCLUDING AND ADDENDA THERETO. COPY TO BE KEPT ON-SITE
MULCH	SHREDDED HARDWOOD		AGED 6 MONTHS, MINIMUM; NO PINE OR WOOD CHIPS
PEA GRAVEL	ASTM-D-448	NO.8 OR NO.9 (1/8" TO 3/8")	
ORNAMENTAL STONE	WASHED COBBLES	STONE: 1" TO 3"	
GEOTEXTILE		N/A	NONWOVEN GEOTEXTILE TABLE H.1 2011 MARYLAND STANDARDS AND SPECIFICATIONS FOR SOIL EROSION AND SEDIMENT CONTROL
UNDERDRAIN GRAVEL	AASHTO M-43	NO.57, 6, OR 67 (3/8" TO 3/4")	
IMPERMEABLE LINER (IF REQUIRED)	ASTM-D-7176	30-MIL THICKNESS	LAYER TO BE ULTRA-VIOLET RESISTANT. A GEOTEXTILE FABRIC SHOULD BE USED TO PROTECT THE LINER FROM PUNCTURE.
UNDERDRAIN PIPING	F 758, TYPE PS 28 AASHTO M-278 AASHTO M-252	4" TO 6"	SLOTTED OR PERFORATED PIPE; SLOTTED PIPE SHALL HAVE A MINIMUM OPEN AREA OF 1.5 SQ.IN. / LINEAR FOOT WITH A MAXIMUM SLOT LENGTH OF 2" AND MAXIMUM SLOT WIDTH OF 1/8 INCH. PERFORATED PIPE SHALL BE WRAPPED WITH 1/4 INCH GALVANIZED HARDWARE CLOTH.
CAST-IN-PLACE CONCRETE (IF REQUIRED)	MSHA MIX. NO.3; F'c=3500 PSI @ 28 DAYS, NORMAL WEIGHT, AIR-ENTRAINED; REINFORCING TO MEET ASTM-615-60	N/A	ON-SITE TESTING OF CAST-IN-PLACE CONCRETE REQUIRED: 28 DAY STRENGTH AND SLUMP TEST; ALL CONCRETE DESIGN (CAST-IN-PLACE OR PRE-CAST) NOT USING PREVIOUSLY APPROVED STATE OR LOCAL STANDARDS REQUIRES DESIGN DRAWINGS SEALED AND APPROVED BY A PROFESSIONAL STRUCTURAL ENGINEER LICENSED IN THE STATE OF MARYLAND - DESIGN TO INCLUDE MEETING ACI CODE 350.R/89; VERTICAL LOADING [H-10 OR H-20]; ALLOWABLE HORIZONTAL LOADING (BASED ON SOIL PRESSURES); AND ANALYSIS OF POTENTIAL CRACKING
COARSE SAND	AASHTO-M6 OR ASTM-C-33	0.02" TO 0.04"	SAND SUBSTITUTIONS SUCH AS DIABASE AND GRAYSTONE (AASHTO) #10 ARE NOT ACCEPTABLE. NO CALCIUM CARBONATED OR DOLOMITIC SAND SUBSTITUTIONS ARE ACCEPTABLE. NO "ROCK DUST" CAN BE USED FOR SAND
STABILIZATION MATTING	SHA SECTION 920.05		TYPE A, B, C OR D AS NOTED ON PLAN / SECTION / DETAILS MARYLAND STATE HIGHWAY ADMINISTRATION STANDARDS SPECIFICATIONS FOR CONSTRUCTION AND MATERIALS DATED JULY 2008 INCLUDING AND ADDENDA THERETO. COPY TO BE KEPT ON-SITE.

SPECIFICATIONS: 1. SEE CHART BELOW.

8----

9

MAINTENANCE SCHEDULE:

INSPECTION ITEM

BIORETENTION BASIN

DEWATERING

MULCH LAYER

ORNAMENTAL STONE

VEGETATIVE SURFACES

HEALTH

EROSION

PLANT COMPOSITION AND

VEGETATIVE COVER AND

DEBRIS AND TRASH

STRUCTURAL COMPONENTS

CLEANOUT

OUTLETS

GRASS CHANNE

THE FACILITY

INSPECTION

-PVC WITH WATERTIGHT SCREW CAP

DEPTH TO INVERT ON CAP

PERMANENTLY MARK FIELD MEASURED

MIN. 6" HEIGHT ABOVE FACILITY SURFACE

SECTION

UNDERDRAIN GRAVEL SECTION

-BOTTOM OF THE

BMP FACILITY

1' X 1' CONCRETE PAD

9

(CAST-IN- PLACE)

CONVEYANCE SYSTEMS

OVERALL FUNCTION OF

SHALL BE THE RESPONSIBILITY OF GOUCHER COLLEGE.

FREQUENCY OF

INSPECTION

SEASONALLY AND

AFTER A MAJOR STORM

- 10 ----

AFTER CONSTRUCTION COMPLETION AND ACCEPTANCE OF THE WORK, INSPECTION AND MAINTENANCE

INSPECTION

REQUIREMENTS

NOTICEABLE ODORS, STAINED

ANAEROBIC CONDITIONS, AND

INADEQUATE DEWATERING OF

OR AT THE OUTLET, OR THE

WATER ON THE FILTER SURFACE

STORMWATER MAINTENANCE SCHEDULE MICRO-BIORETENTION

SEASONALLY AND FACILITY MUST DEWATER

AFTER A MAJOR STORM WITHIN 48 HOURS OF RAINFALL.

THE FACILITY.

ACCUMULATION, OR

ACCUMULATION, OR

COMPARE PLANT COMPOSITION

CHECK FOR INVASIVE SPECIES

OR WEEDS. CHECK FOR DEAD

CHANNELIZING, OR BARE SPOTS.

CHECK THAT THE FACILITY IS

INLETS, OUTLETS, AND

THE FACILITY MUST BE

CHECK FOR EVIDENCE OF

BE IN GOOD CONDITION.

CHECK FOR EVIDENCE OF

RIPRAP OUTLET MUST BE

FUNCTIONAL CONDITION.

MAINTAINED IN GOOD

CHECKED

AFTER A MAJOR STORM EROSION, RILLS, OR GULLYING.

SEASONALLY AND CHECK FOR EROSION. FLOW

IF FIELD CONDITIONS REQUIRE A MODIFICATION TO THE ORIGINAL APPROVAL IN ORDER TO ACHIEVE THE INTENDED DESIGN FUNCTION, CONTACT MDE'S SEDIMENT AND STORMWATER MANAGEMENT PLAN REVIEW DIVISION AT

• DURING PLACEMENT AND BACKFILL OF UNDERDRAIN PIPE AND GRAVEL.

CONVEYANCE.

AS DESIGNED.

REGULAR INSPECTIONS SHALL BE MADE DURING THE FOLLOWING STAGES OF CONSTRUCTION:

CONTRACTOR SHALL NOTIFY THE CERTIFYING ENGINEER 48 HOURS PRIOR TO REQUIRED INSPECTION.

AFTER A MAJOR STORM |BLOCKAGES, AND STABLE

CLEAN OF TRASH AND DEBRIS.

STRUCTURAL DETERIORATION,

SPALLING, OR CRACKING. INLET

AND OUTLET STRUCTURES MUST

CONTRIBUTING AREAS AROUND

WITH APPROVED PLANS.

OR DYING VEGETATION.

CHECK FOR EVIDENCE OF

EROSION, RUNOFF

DISCOLORATION.

DISCOLORATION.

SEASONALLY AND AFTER A MAJOR STORM CHECK MULCH FOR ADEQUATE COVER, SEDIMENT

SEASONALLY AND CHECK STONE FOR ADEQUATE

AFTER A MAJOR STORM COVER, SEDIMENT

MONTHLY

MONTHLY

MONTHLY

MONTHLY

ANNUALLY

SEASONALLY AND

ANNUALLY

410-537-3563 FOR REVIEW AND APPROVAL OF PROPOSED MODIFICATIONS.

• DURING EXCAVATION TO SUBGRADE. DURING PLACEMENT OF GEOTEXTILE.

DURING PLACEMENT OF MULCH.

DURING PLACEMENT OF PLANTS.

COARSE SAND

SECTION

PEA GRAVEL

SECTION

• DURING PLACEMENT OF BACKFILL AND BSM SOIL.

11

REMEDIAL ACTION

THE TOP THREE INCHES OF

SPECIFICATIONS. FOLLOW UP

FUNCTION AS INTENDED AFTER

SOIL SHOULD BE REMOVED

AND REPLACED WITH SOIL

MATERIAL AS PER PLAN

THE FACILITY DOES NOT

THE ABOVE ACTION OR

DRAWDOWN EXCEEDS 72

NEED TO BE REMOVED AND

REMOVE AND REPLACE OLD

HOURS, ALL MEDIA AND UNDERDRAIN SYSTEM

MULCH AND EXCESS

SEDIMENTS. PROVIDE

STONE AND EXCESS SEDIMENTS. PROVIDE

REMOVE AND REPLACE

PLAN SPECIFICATIONS.

RE-SEED OR RE-PLANT IN

APPROVED LANDSCAPING

PLANS. RE-GRADING MAY

CONCENTRATED FLOW CAUSES

RILLS OR GULLYING THROUGH

TRASH AND DEBRIS MUST BE

ACCORDANCE WITH

BE REQUIRED WHEN

DISPOSED OF IN AN

ACCEPTABLE MANNER

ACCORDING TO CURRENT

SPECIFICATIONS ON THE

AND GRADE TO PROVIDE

STABLE CONVEYANCE.

REPAIR ACCORDING TO

STABILIZE AND GRADE

ACCORDING TO APPROVED

APPROVED PLAN.

PLAN.

CHECK THAT ANY FLOW SPLITTERS REPAIRS MUST BE IN

ARE FUNCTIONING AS DESIGNED ACCORDANCE WITH

AND THAT BYPASS IS OPERATING APPROVED PLANS.

APPROVED PLANS.

REPAIR TO GOOD CONDITION

STABILIZE ALL ERODED AREAS

THE FACILITY.

REGULATIONS.

ACCORDING TO

ADEQUATE MULCH COVER

ACCORDING TO APPROVED

REMOVE AND REPLACE OLD

ADEQUATE STONE COVER

ACCORDING TO APPROVED

PLANTS IN ACCORDANCE WITH

REPLACED.

DESIGN

DESIGN.

PRESENCE OF ALGAE OR AQUATIC INSPECTIONS MUST CONFIRM VEGETATION ARE INDICATORS OF ADEQUATE DEWATERING. IF

-CLEANOUT WITH

PIPE SEAL

GASKET

COUNTER- SUNK HEAD

- FINISHED GRADE

TOP OF FACILITY

ADJACENT GROUND)

NON-PERFORATED -

---8---

SLOTTED OR

PERFORATED

4" OR 6" PVC —

3" OR 4" (TYP.)

6"

(TYP.)

3"

(TYP.)

SECTION

OBSERVATION WELL

NOT TO SCALE

STABILIZATION

(FLUSH WITH

4" OR 6" PVC

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

STORMWATER MANAGEMENT DETAILS

DRAWING NAME

CHIEF

APPROVED:

---10 ---

STORMWATER ENGINEERING

BALTO. CO. DEPT. OF ENVIRONMENTAL PROTECTION

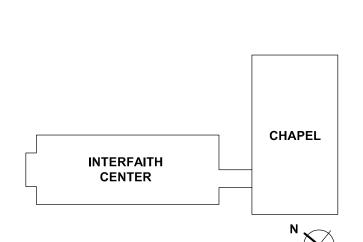
AND SUSTAINABILITY

AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

COORDINATES SHOWN HEREON ARE REFERRED TO THE

MARYLAND STATE PLANE COORDINATE SYSTEM, NAD 83 (1991). ELEVATIONS SHOWN HEREON ARE REFERRED TO THE NORTH

11


PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS

DRAWING INFORMATION	
ISSUE DATE:	04/28/17
SCALE:	AS SHOWN
JOB NO.:	21641.00
DRAWN BY:	M.L.H.

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

www kibart com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING KIBART TOWSON, MD 21204 410.494.1111

www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

410.712.0390

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

www.asg-architects.com

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS

CIVIL ENGINEER WBCM

www.morabitoconsultants.com

410.467.2377

300 EAST JOPPA ROAD, SUITE 200

SPARKS, MD 21152

952 RIDGEBROOK ROAD, SUITE 1700

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

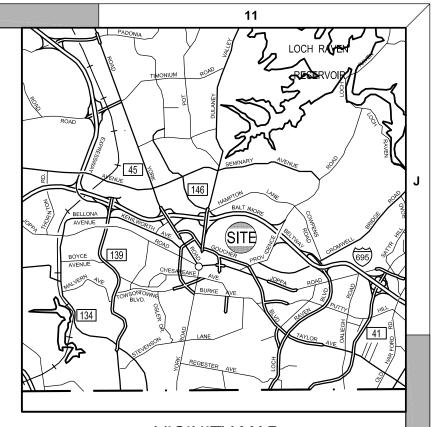
MUELLER ASSOCIATES

www.asg-architects.com

BALTIMORE, MD 21230 410.347.8500 1306 CONCOURSE DRIVE, SUITE 100

1040 HULL STREET, SUITE 100 M/E/P & FIRE PROTECTION ENGINEER

PROJECT TEAM ARCHITECT AYERS SAINT GROSS


CENTER GOUCHER COLLEGE 1021 DULANEY VALLEY RD

BALTIMORE MD 21204

GOLDSMITH INTERFAITH

GOUCHER —college—

VICINITY MAP SCALE: 1"=8,333'

W.B	W.B.C.M. SURVEY TRAVERSE CONTROL LISTING					
PT#	NORTHING	EASTING	ELEV.	DESCRIPTION		
900	634,857.58	1,427,613.23	426.05	REBAR & CAP		
907	634,822.80	1,427,408.39	433.45	REBAR & CAP		
910	634,931.90	1,427,180.57	431.77	REBAR & CAP		
911	635,042.54	1,427,385.67	426.70	REBAR & CAP		

- 10 ---

DAILY STABILIZATION NOTE:

9

THIS NOTE SHOULD BE USED FOR MINIMAL AREAS WITHIN THE LIMITS OF DISTURBANCE THAT DO NOT DRAIN TO A SEDIMENT CONTROL MEASURE AND/OR WHERE THE INSTALLATION OF CONTROLS IS NOT FEASIBLE. (ROAD WIDENING, SIDEWALK INSTALLATION, ETC.).

CONTRACTOR SHALL ONLY DISTURB THAT AREA WHICH CAN BE COMPLETED AND STABILIZED BY THE END OF EACH WORKING DAY. STABILIZATION SHALL BE AS FOLLOWS: 1.) FOR AREAS TO BE PAVED, THE APPLICATION OF STONE BASE.

2.) FOR AREAS TO BE VEGETATIVELY STABILIZED: A.) PERMANENT SEED AND SOIL STABILIZATION MATTING OR SOD FOR ALL STEEP

SLOPES, CHANNELS OR SWALES. B.) PERMANENT SEED AND MULCH FOR ALL OTHER AREAS.

ANY AREAS WHICH CAN NOT BE STABILIZED BY THE END OF EACH WORKING DAY MUST HAVE SILT FENCE INSTALLED ON THE DOWN SLOPE SIDE.

MAINTENANCE NOTE

CONTRACTOR SHALL INSPECT AND MAINTAIN ALL SEDIMENT CONTROL MEASURES AND DEVICES AFTER EVERY STORM EVENT. MAINTENANCE SHALL INCLUDE, BUT NOT LIMITED TO THE REMOVAL OF ALL ACCUMULATED SEDIMENT. GEOTEXTILE FABRIC SHALL BE REPLACED AS NEEDED TO ENSURE PROPER FUNCTION.

SLOPE AND CHANNEL STABILIZATION

CONTRACTOR TO IMMEDIATELY STABILIZE WITH PERMANENT SEED AND SOIL STABILIZATION MATTING ALL SLOPES 4:1 (25%) OR GREATER AND ALL CHANNELS WITH TEMPORARY SOIL STABILIZATION MATTING UPON FINAL GRADING.

BALTIMORE COUNTY SOIL CONSERVATION DISTRICT APPROVED FOR SEDIMENT CONTROL

DISTRICT OFFICIAL TECHNICAL REVIEW FOR THE DISTRICT BY:

IF A GRADING PERMIT HAS NOT BEEN OBTAINED WITHIN TWO YEARS OF THIS APPROVAL, THIS PLAN SHALL BE RE-SUBMITTED TO THE DISTRICT.

SEQUENCE OF OPERATIONS

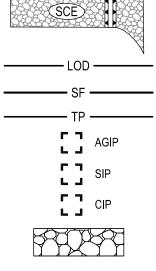
- 1. NOTIFY BALTIMORE COUNTY DEPARTMENT OF PERMITS, APPROVALS AND INSPECTIONS, SEDIMENT CONTROL, (410) 887-3226 AT LEAST 48 HOURS PRIOR TO
- BEGINNING WORK. 2. IF APPLICABLE, ORANGE HIGH VISIBILITY FENCE SHALL BE MANUALLY INSTALLED
- ALONG THE LIMIT OF DISTURBANCE, WHERE THE LIMIT IS WITHIN 50 FEET OF THE FOREST BUFFER / CONSERVATION EASEMENT. THIS SHALL BE COMPLETED BY AND INSPECTED AT THE PRE-CONSTRUCTION MEETING.
- 3. CLEAR AND GRUB FOR SEDIMENT & EROSION CONTROL MEASURES OR DEVICES ONLY. 4. INSTALL ALL SEDIMENT & EROSION CONTROL MEASURES AND DEVICES EXCEPT SCE
- AT PROPOSED PERMANENT ENTRANCE.
- 5. NOTIFY BALTIMORE COUNTY DEPARTMENT OF PERMITS, APPROVALS AND INSPECTIONS, SEDIMENT CONTROL, UPON COMPLETION OF SAID INSTALLATION.
- 6. WITH WRITTEN APPROVAL OF BALTIMORE COUNTY DEPARTMENT OF PERMITS, APPROVALS AND INSPECTIONS, SEDIMENT CONTROL AND THE SEDIMENT CONTROL
- INSPECTOR BEGIN EARTH WORK AS SEQUENCED.
- 7. GRADE AND PREPARE SITE FOR BUILDING FOUNDATION. 8. BEGIN CONSTRUCTION OF BUILDING AND INSTALL UTILITIES.
- 9. UPON STABILIZATION OF CONTRIBUTING DRAINAGE AREAS BEGIN GRADING AND CONSTRUCTION OF FACILITIES AS SHOWN ON THE APPROVED SWM SHEETS. 10. UPON STABILIZATION OF THE SITE WITH ESTABLISHED VEGETATION AND WITH WRITTEN PERMISSION OF THE SEDIMENT CONTROL INSPECTOR, REMOVE SEDIMENT

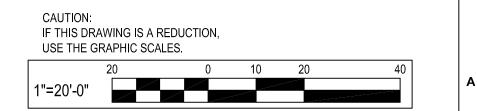
CONTROL MEASURES AND STABILIZE THOSE AREAS DISTURBED BY THIS PROCESS.

SEDIMENT CONTROL LEGEND

STABILIZED CONSTRUCTION ENTRANCE

LIMIT OF DISTURBANCE


SILT FENCE


TREE PROTECTION AT GRADE INLET PROTECTION

STANDARD INLET PROTECTION

CURB INLET PROTECTION

ROCK OUTFALL PROTECTION

NOTE TO CONTRACTOR: SEDIMENT AND EROSION CONTROL SHALL BE STRICTLY ENFORCED.

9

COORDINATES SHOWN HEREON ARE REFERRED TO THE MARYLAND STATE PLANE COORDINATE SYSTEM, NAD 83 (1991). ELEVATIONS SHOWN HEREON ARE REFERRED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

11

DRAWING NUMBER

DRAWING NAME

DOCUMENTS

50% CONSTRUCTION

PROJECT DESIGN PHASE

NOT FOR CONSTRUCTION

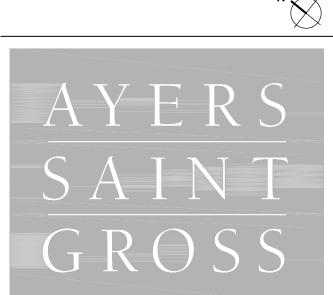
DRAWING INFORMATION

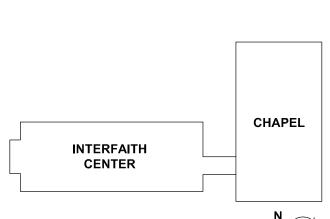
04/28/17

1" = 20'

21641.00

M.L.H.


ISSUE DATE:


SCALE:

JOB NO.:

DRAWN BY:

ARCHITECTS + PLANNERS

REV. # DESCRIPTION DATE KEY PLAN

410.750.2246 www.koffel.com REVISIONS

TOWSON, MD 21204 410.494.1111 www kibart com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

KIBART

COMMISSIONING 901 DULANEY VALLEY ROAD, SUITE 301

HANOVER, MD 21076 410.712.0390 www.spexsys.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

www.asg-architects.com

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS

CIVIL ENGINEER WBCM BALTIMORE, MD 21286

www.morabitoconsultants.com

SPARKS, MD 21152 410.467.2377 300 EAST JOPPA ROAD, SUITE 200

952 RIDGEBROOK ROAD, SUITE 1700

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

MUELLER ASSOCIATES

www.asg-architects.com

BALTIMORE, MD 21230 410.347.8500 1306 CONCOURSE DRIVE, SUITE 100

AYERS SAINT GROSS

1040 HULL STREET, SUITE 100

M/E/P & FIRE PROTECTION ENGINEER

ARCHITECT

PROJECT TEAM

CENTER GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOUCHER

-college-

GOLDSMITH INTERFAITH

SEEDING AND MULCHING A. SEEDING 1. SPECIFICATIONS a. ALL SEED MUST MEET THE REQUIREMENTS OF THE MARYLAND STATE SEED LAW. ALL SEED MUST BE SUBJECT TO RE_TESTING BY A RECOGNIZED SEED LABORATORY. ALL SEED USED MUST HAVE BEEN TESTED WITHIN THE 6 MONTHS IMMEDIATELY PRECEDING THE DATE OF SOWING SUCH MATERIAL ON ANY PROJECT. REFER TO TABLE B.4 REGARDING THE QUALITY OF SEED. SEED TAGS MUST BE AVAILABLE UPON REQUEST TO THE INSPECTOR TO VERIFY TYPE AND RATE OF SEED USED. b. MULCH ALONE MAY BE APPLIED BETWEEN THE FALL AND SPRING SEEDING DATES ONLY IF THE GROUND IS FROZEN. THE APPROPRIATE SEEDING MIXTURE MUST BE APPLIED WHEN THE GROUND THAWS. c. INOCULANTS: THE INOCULANT FOR TREATING LEGUME SEED IN THE SEED MIXTURES MUST BE A PURE CULTURE OF NITROGEN FIXING BACTERIA PREPARED SPECIFICALLY FOR THE SPECIES. INOCULANTS MUST NOT BE USED LATER THAN THE DATE INDICATED ON THE CONTAINER. ADD FRESH INOCULANTS AS DIRECTED ON THE PACKAGE. USE FOUR TIMES THE RECOMMENDED RATE WHEN HYDROSEEDING. NOTE: IT IS VERY IMPORTANT TO KEEP INOCULANT AS COOL AS POSSIBLE UNTIL USED. TEMPERATURES ABOVE 75 TO 80 DEGREES FAHRENHEIT CAN WEAKEN BACTERIA AND MAKE THE INOCULANT LESS EFFECTIVE. d. SOD OR SEED MUST BE PLACED ON SOIL WHICH HAS BEEN TREATED WITH SOIL STERILANTS OR CHEMICALS USED FOR WEED CONTROL UNTIL SUFFICIENT TIME HAS ELAPSED (14 DAYS MIN.) TO PERMIT DISSIPATION OF PHYTO-TOXIC MATERIALS. 2. APPLICATION a. DRY SEEDING: THIS INCLUDES USE OF CONVENTIONAL DROP OR BROADCAST SPREADERS. INCORPORATE SEED INTO THE SUBSOIL AT THE RATES PRESCRIBED ON TEMPORARY SEEDING TABLE B.1, PERMANENT SEEDING TABLE B.3, OR SITE-SPECIFIC SEEDING SUMMARIES ii. APPLY SEED IN TWO DIRECTIONS, PERPENDICULAR TO EACH OTHER. APPLY HALF THE SEEDING RATE IN EACH DIRECTION. ROLL THE SEEDED AREA WITH A WEIGHTED ROLLER TO PROVIDE GOOD SEED TO SOIL CONTACT. b. DRILL OR CULTIPACKER SEEDING: MECHANIZED SEEDERS THAT APPLY AND COVER SEED WITH SOIL i. CULTIPACKING SEEDERS ARE REQUIRED TO BURY THE SEED IN SUCH A FASHION AS TO PROVIDE AT LEAST 1/4 INCH OF SOIL COVERING. SEEDBED MUST BE FIRM AFTER PLANTING ii. APPLY SEED IN TWO DIRECTIONS, PERPENDICULAR TO EACH OTHER. APPLY HALF THE SEEDING RATE IN EACH DIRECTION. HYDROSEEDING: APPLY SEED UNIFORMLY WITH HYDROSEEDER (SLURRY INCLUDES SEED AND FERTILIZER). i. IF FERTILIZER IS BEING APPLIED AT THE TIME OF SEEDING, THE APPLICATION RATES SHOULD NOT EXCEED THE FOLLOWING: NITROGEN, 100 POUNDS PER ACRE TOTAL OF SOLUBLE NITROGEN: P2O5 (PHOSPHOROUS), 200 POUNDS PER ACRE; K2O (POTASSIUM), 200 POUNDS PER ACRE. ii. LIME: USE ONLY GROUND AGRICULTURAL LIMESTONE (UP TO 3 TONS PER ACRE MAY BE APPLIED BY HYDROSEEDING). NORMALLY, NOT MORE THAN 2 TONS ARE APPLIED BY HYDROSEEDING AT ANY ONE TIME. DO NOT USE BURNT OR HYDRATED LIME WHEN HYDROSEEDING. iii. MIX SEED AND FERTILIZER ON SITE AND SEED IMMEDIATELY AND WITHOUT INTERRUPTION. iv. WHEN HYDROSEEDING DO NOT INCORPORATE SEED INTO THE SOIL. B. MULCHING 1. MULCH MATERIALS (IN ORDER OF PREFERENCE) a. STRAW CONSISTING OF THOROUGHLY THRESHED WHEAT, RYE, OAT, OR BARLEY AND REASONABLY BRIGHT IN COLOR. STRAW IS TO BE FREE OF NOXIOUS WEED SEEDS AS SPECIFIED IN THE MARYLAND SEED LAW AND NOT MUSTY, MOLDY, CAKED, DECAYED, OR EXCESSIVELY DUSTY. NOTE: USE ONLY STERILE STRAW MULCH IN AREAS WHERE ONE SPECIES OF GRASS IS DESIRED WOOD CELLULOSE FIBER MULCH (WCFM) CONSISTING OF SPECIALLY PREPARED WOOD CELLULOSE PROCESSED INTO A UNIFORM FIBROUS PHYSICAL STATE i. WCFM IS TO BE DYED GREEN OR CONTAIN A GREEN DYE IN THE PACKAGE THAT WILL PROVIDE AN APPROPRIATE COLOR TO FACILITATE VISUAL INSPECTION OF THE UNIFORMLY SPREAD SLURRY WCFM, INCLUDING DYE, MUST CONTAIN NO GERMINATION OR GROWTH INHIBITING FACTORS WCFM MATERIALS ARE TO BE MANUFACTURED AND PROCESSED IN SUCH A MANNER THAT THE WOOD CELLULOSE FIBER MULCH WILL REMAIN IN UNIFORM SUSPENSION IN WATER UNDER AGITATION AND WILL BLEND WITH SEED. FERTILIZER AND OTHER ADDITIVES TO FORM A HOMOGENEOUS SI URBY THE MULCH MATERIAL MUST FORM A BLOTTER-LIKE GROUND COVER. ON APPLICATION, HAVING MOISTURE ABSORPTION AND PERCOLATION PROPERTIES AND MUST COVER AND HOLD GRASS SEED IN CONTACT WITH THE SOIL WITHOUT INHIBITING THE GROWTH OF THE GRASS SEEDLINGS. iv. WCFM MATERIAL MUST NOT CONTAIN ELEMENTS OR COMPOUNDS AT CONCENTRATION LEVELS THAT WILL BE PHYTO-TOXIC. WCFM MUST CONFORM TO THE FOLLOWING PHYSICAL REQUIREMENTS: FIBER LENGTH OF APPROXIMATELY 10 MILLIMETERS. DIAMETER APPROXIMATELY 1 MILLIMETER, PH RANGE OF 4.0 TO 8.5, ASH CONTENT OF 1.6 PERCENT MAXIMUM AND WATER HOLDING CAPACITY OF 90 PERCENT MINIMUM 2. APPLICATION: a. APPLY MULCH TO ALL SEEDED AREAS IMMEDIATELY AFTER SEEDING WHEN STRAW MULCH IS USED, SPREAD IT OVER ALL SEEDED AREAS AT THE RATE OF 2 TONS PER ACRE TO A UNIFORM LOOSE DEPTH OF 1 TO 2 INCHES. APPLY MULCH TO ACHIEVE A UNIFORM DISTRIBUTION AND DEPTH SO THAT THE SOIL SURFACE IS NOT EXPOSED. WHEN USING A MULCH ANCHORING TOOL. INCREASE THE APPLICATION RATE TO 2.5 TONS PER ACRE. c. WOOD CELLULOSE FIBER USED AS MULCH MUST BE APPLIED AT A NET DRY WEIGHT OF 1500 POUNDS PER ACRE. MIX THE WOOD CELLULOSE FIBER WITH WATER TO ATTAIN A MIXTURE WITH A MAXIMUM OF 50 POUNDS OF WOOD CELLULOSE FIBER PER 100 GALLONS OF WATER. 3. ANCHORING a. PERFORM MULCH ANCHORING IMMEDIATELY FOLLOWING APPLICATION TO MINIMIZE LOSS BY WIND OR WATER. THIS MAY BE DONE BY ONE OF THE FOLLOWING METHODS (LISTED BY PREFERENCE), DEPENDING UPON THE SIZE OF THE AREA AND EROSION HAZARD: A MULCH ANCHORING TOOL IS A TRACTOR DRAWN IMPLEMENT DESIGNED TO PUNCH AND ANCHOR MULCH INTO THE SOIL SURFACE A MINIMUM OF 2 INCHES. THIS PRACTICE IS MOST EFFECTIVE ON LARGE AREAS, BUT IS LIMITED TO FLATTER SLOPES WHERE EQUIPMENT CAN OPERATE SAFELY. IF USED ON SLOPING LAND, THIS PRACTICE SHOULD BE USED ON THE CONTOUR IF POSSIBLE. ii. WOOD CELLULOSE FIBER MAY BE USED FOR ANCHORING STRAW. APPLY THE FIBER BINDER AT A NET DRY WEIGHT OF 750 POUNDS PER ACRE. MIX THE WOOD CELLULOSE FIBER WITH WATER AT A MAXIMUM OF 50 POUNDS OF WOOD CELLULOSE FIBER PER 100 GALLONS OF WATER iii. SYNTHETIC BINDERS SUCH AS ACRYLIC DLR (AGRO-TACK), DCA-70, PETROSET, TERRA TAX II, TERRA TACK AR OR OTHER APPROVED EQUAL MAY BE USED. FOLLOW APPLICATION RATES AS SPECIFIED BY THE MANUFACTURER. APPLICATION OF LIQUID BINDERS NEEDS TO BE HEAVIER AT THE EDGES WHERE WIND CATCHES MULCH, SUCH AS IN VALLEYS AND ON CRESTS OF BANKS. USE OF ASPHALT BINDERS IS STRICTLY **PROHIBITED**. iv. LIGHTWEIGHT PLASTIC NETTING MAY BE STAPLED OVER THE MULCH ACCORDING TO MANUFACTURER RECOMMENDATIONS. NETTING IS USUALLY AVAILABLE IN ROLLS 4 TO 15 FEET WIDE AND 300 TO 3,000 FEET LONG. TEMPORARY STABILIZATION <u>CONDITIONS WHERE PRACTICE APPLIES</u> EXPOSED SOILS WHERE GROUND COVER IS NEEDED FOR A PERIOD OF 6 MONTHS OR LESS. FOR LONGER DURATION OF TIME, PERMANENT STABILIZATION PRACTICES ARE REQUIRED. 1. SELECT ONE OR MORE OF THE SPECIES OR SEED MIXTURES LISTED IN TABLE B.1 FOR THE APPROPRIATE PLANT HARDINESS ZONE (FROM FIGURE B.3), AND ENTER THEM IN THE TEMPORARY SEEDING SUMMARY BELOW ALONG WITH APPLICATION RATES, SEEDING DATES AND SEEDING DEPTHS. IF THIS SUMMARY IS NOT PUT ON THE PLAN AND COMPLETED, THAN TABLE B.1 PLUS FERTILIZER AND LIME RATES MUST BE PUT ON THE PLAN 2. FOR SITES HAVING SOIL TESTS PERFORMED, USE AND SHOW THE RECOMMENDED RATES BY THE TESTING AGENCY. SOIL TESTS ARE NOT REQUIRED FOR TEMPORARY SEEDING. 3. WHEN STABILIZATION IS REQUIRED OUTSIDE OF A SEEDING SEASON, APPLY SEED AND MULCH OR STRAW MULCH ALONE AS PRESCRIBED IN SECTION B-4-3, A, 1, b AND MAINTAIN UNTIL THE NEXT SEEDING SEASON. Seed Mixture (Hardiness Zone 7a Species ANNUAL RYEGRASS FOXTAIL MILLET

- 2 -

3

PERMANENT STABILIZATION

CONDITIONS WHERE PRACTICE APPLIES EXPOSED SOILS WHERE GROUND COVER IS NEEDED FOR 6 MONTHS OR MORE.

PROTECTION AND ASSURES A PURE GENETIC LINE

A. SEED MIXTURES

- 1. GENERAL USE
- a. SEE PERMANENT SEEDING SUMMARY. b. ADDITIONAL PLANTING SPECIFICATIONS FOR EXCEPTIONAL SITES SUCH AS SHORELINES, STREAM BANKS, OR DUNES OR FOR SPECIAL PURPOSES SUCH AS WILDLIFE OR AESTHETIC TREATMENT MAY BE FOUND IN USDA_NRCS TECHNICAL FIELD OFFICE GUIDE, SECTION 342 _ CRITICAL AREA PLANTING c. FOR SITES HAVING DISTURBED AREA OVER 5 ACRES, USE AND SHOW THE RATES RECOMMENDED BY THE SOIL TESTING AGENCY.

TEMPORARY SEEDING SUMMARY

2/15 - 4/30

8/15 - 11/30

5/1 - 8/14

Application Rate

40 lb/ac

30 lb/ac

Fertilizer

436 lb/ac

(10 lb/

1000 sf)

2 tons/ac

(100 lb/

1000 sf)

Seeding Dates Depths 10-20-20

1/2"

1/2"

- d. FOR AREAS RECEIVING LOW MAINTENANCE, APPLY UREA FORM FERTILIZER (46-0-0) AT 3 ½ POUNDS PER 1000 SQUARE FEET (150 POUNDS PER ACRE) AT THE TIME OF SEEDING IN ADDITION TO THE SOIL AMENDMENTS SHOWN IN THE PERMANENT SEEDING SUMMARY . 2. TURFGRASS MIXTURES a. AREAS WHERE TURFGRASS MAY BE DESIRED INCLUDE LAWNS, PARKS, PLAYGROUNDS, AND COMMERCIAL SITES WHICH WILL RECEIVE A MEDIUM TO HIGH LEVEL OF MAINTENANCE.
- b. SELECT ONE OR MORE OF THE SPECIES OR MIXTURES LISTED BELOW BASED ON THE SITE CONDITIONS OR PURPOSE. ENTER SELECTED MIXTURE(S), APPLICATION RATES, AND SEEDING DATES IN THE PERMANENT SEEDING SUMMARY. THE SUMMARY IS TO BE PLACED ON THE PLAN. i. KENTUCKY BLUEGRASS: FULL SUN MIXTURE: FOR USE IN AREAS THAT RECEIVE INTENSIVE MANAGEMENT. IRRIGATION REQUIRED IN THE
- AREAS OF CENTRAL MARYLAND AND EASTERN SHORE. RECOMMENDED CERTIFIED KENTUCKY BLUEGRASS CULTIVARS SEEDING RATE: 1.5 TO 2.0 POUNDS PER 1000 SQUARE FEET. CHOOSE A MINIMUM OF THREE KENTUCKY BLUEGRASS CULTIVARS WITH EACH RANGING FROM 10 TO 35 PERCENT OF THE TOTAL MIXTURE BY WEIGHT. KENTUCKY BLUEGRASS/PERENNIAL RYE: FULL SUN MIXTURE: FOR USE IN FULL SUN AREAS WHERE RAPID ESTABLISHMENT IS NECESSARY
- AND WHEN TURF WILL RECEIVE MEDIUM TO INTENSIVE MANAGEMENT. CERTIFIED PERENNIAL RYEGRASS CULTIVARS/CERTIFIED KENTUCKY BLUEGRASS SEEDING RATE: 2 POUNDS MIXTURE PER 1000 SQUARE FEET, CHOOSE A MINIMUM OF THREE KENTUCKY BLUEGRASS CULTIVARS WITH EACH RANGING FROM 10 TO 35 PERCENT OF THE TOTAL MIXTURE BY WEIGHT iii. TALL FESCUE/KENTUCKY BLUEGRASS: FULL SUN MIXTURE: FOR USE IN DROUGHT PRONE AREAS AND/OR FOR AREAS RECEIVING LOW TO MEDIUM MANAGEMENT IN FULL SUN TO MEDIUM SHADE. RECOMMENDED MIXTURE INCLUDES: CERTIFIED TALL FESCUE CULTIVARS 95 TO
- 100 PERCENT, CERTIFIED KENTUCKY BLUEGRASS CULTIVARS 0 TO 5 PERCENT. SEEDING RATE: 5 TO 8 POUNDS PER 1000 SQUARE FEET. ONE OR MORE CULTIVARS MAY BE BLENDED. iv. KENTUCKY BLUEGRASS/FINE FESCUE: SHADE MIXTURE: FOR USE IN AREAS WITH SHADE IN BLUEGRASS LAWNS. FOR ESTABLISHMENT IN HIGH QUALITY, INTENSIVELY MANAGED TURF AREA. MIXTURE INCLUDES; CERTIFIED KENTUCKY BLUEGRASS CULTIVARS 30 TO 40 PERCENT
- AND CERTIFIED FINE FESCUE AND 60 TO 70 PERCENT. SEEDING RATE: 11/2 TO 3 POUNDS PER 1000 SQUARE FEET. NOTES: TURFGRASS VARIETIES SHOULD BE SELECTED FROM THOSE LISTED IN THE MOST CURRENT UNIVERSITY OF MARYLAND PUBLICATION, AGRONOMY MEMO #77, "TURFGRASS CULTIVAR RECOMMENDATIONS FOR MARYLAND"

CHOOSE CERTIFIED MATERIAL. CERTIFIED MATERIAL IS THE BEST GUARANTEE OF CULTIVAR PURITY. THE CERTIFICATION PROGRAM OF THE MARYLAND DEPARTMENT OF AGRICULTURE. TURF AND SEED SECTION. PROVIDES A RELIABLE MEANS OF CONSUMER.

3

- 4 ----

c. IDEAL TIMES OF SEEDING

- 4

WESTERN MD: MARCH 15 TO JUNE 1, AUGUST 1 TO OCTOBER 1 (HARDINESS ZONES: 5B, 6A) CENTRAL MD: MARCH 1 TO MAY 15, AUGUST 15 TO OCTOBER 15 (HARDINESS ZONE: 6B) OUTHERN MD, EASTERN SHORE: MARCH 1 TO MAY 15, AUGUST 15 TO OCTOBER 15 (HARDINESS ZONES: 7A, 7B)

5

d. TILL AREAS TO RECEIVE SEED BY DISKING OR OTHER APPROVED METHODS TO A DEPTH OF 2 TO 4 INCHES, LEVEL AND RAKE THE AREAS TO PREPARE A PROPER SEEDBED. REMOVE STONES AND DEBRIS OVER 1½ INCHES IN DIAMETER. THE RESULTING SEEDBED MUST BE IN SUCH CONDITION THAT FUTURE MOWING OF GRASSES WILL POSE NO DIFFICULTY e. IF SOIL MOISTURE IS DEFICIENT, SUPPLY NEW SEEDINGS WITH ADEQUATE WATER FOR PLANT GROWTH (½ TO 1 INCH EVERY 3 TO 4 DAYS DEPENDING ON SOIL TEXTURE) UNTIL THEY ARE FIRMLY ESTABLISHED. THIS IS ESPECIALLY TRUE WHEN SEEDINGS ARE MADE LATE IN THE PLANTING SEASON, IN ABNORMALLY DRY OR HOT SEASONS, OR ON ADVERSE SITES.

6-----

		PERM	ANENT SEED	ING SUM	MARY				
	Seed Mixture (Hardiness Zone 7a)					Fertilizer Rate (10-20-20)			
Mix No.	Species	Application Rate	*Seeding Dates	Depths	N	P205	K20	Rate	
6	TALL FESCUE PERENNIAL RYE BIRDSFOOT TREFOIL	40 lb/ac. 25 lb/ac. 8 lb/ac.			45 lb/ac	90 lb/ac	90 lb/ac.		
7	CREEPING RED FESCUE KENTUCKY BLUEGRASS	60 lb/ac. 15 lb/ac.	2/15 - 4/30 8/15 - 10/31		1/4"-1/2"	(1 lb/	(2.0 lb/	(2.0 lb/	2 tons/ac (100 lb/
11	CREEPING RED FESCUE CHEWINGS FESCUE KENTUCKY BLUEGRASS ROUGH BLUEGRASS	30 lb/ac. 30 lb/ac. 20 lb/ac. 15 lb/ac.			1000 sf)	1000 sf)	1000 sf)	1000 sf)	

* FOR THE PERIOD 5/1 - 8/14 ADD FOXTAIL, OR PEARL MILLET TO THE PERMANENT SEED MIX DO NOT EXCEED MORE THAN 5% (BY WEIGHT) OF THE OVERALL PERMANENT SEEDING MIX

B. SOD: TO PROVIDE QUICK COVER ON DISTURBED AREAS (2:1 GRADE OR FLATTER). GENERAL SPECIFICATIONS

- a. CLASS OF TURFGRASS SOD MUST BE MARYLAND STATE CERTIFIED. SOD LABELS MUST BE MADE AVAILABLE TO THE JOB FOREMAN AND INSPECTOR. b. SOD MUST BE MACHINE CUT AT A UNIFORM SOIL THICKNESS OF ¾ INCH, PLUS OR MINUS ¼ INCH, AT THE TIME OF CUTTING. MEASUREMENT FOR THICKNESS MUST EXCLUDE TOP GROWTH AND THATCH. BROKEN PADS AND TORN OR UNEVEN ENDS WILL NOT BE ACCEPTABLE.
- c. STANDARD SIZE SECTIONS OF SOD MUST BE STRONG ENOUGH TO SUPPORT THEIR OWN WEIGHT AND RETAIN THEIR SIZE AND SHAPE WHEN SUSPENDED VERTICALLY WITH A FIRM GRASP ON THE UPPER 10 PERCENT OF THE SECTION. d. SOD MUST NOT BE HARVESTED OR TRANSPLANTED WHEN MOISTURE CONTENT (EXCESSIVELY DRY OR WET) MAY ADVERSELY AFFECT ITS
- SURVIVAL. e. SOD MUST BE HARVESTED, DELIVERED, AND INSTALLED WITHIN A PERIOD OF 36 HOURS. SOD NOT TRANSPLANTED WITHIN THIS PERIOD MUST BE APPROVED BY AN AGRONOMIST OR SOIL SCIENTIST PRIOR TO ITS INSTALLATION. SOD INSTALLATION
- a. DURING PERIODS OF EXCESSIVELY HIGH TEMPERATURE OR IN AREAS HAVING DRY SUBSOIL, LIGHTLY IRRIGATE THE SUBSOIL IMMEDIATELY PRIOR TO LAYING THE SOD. b. LAY THE FIRST ROW OF SOD IN A STRAIGHT LINE WITH SUBSEQUENT ROWS PLACED PARALLEL TO IT AND TIGHTLY WEDGED AGAINST EACH OTHER. STAGGER LATERAL JOINTS TO PROMOTE MORE UNIFORM GROWTH AND STRENGTH. ENSURE THAT SOD IS NOT STRETCHED OR
- OVERLAPPED AND THAT ALL JOINTS ARE BUTTED TIGHT IN ORDER TO PREVENT VOIDS WHICH WOULD CAUSE AIR DRYING OF THE ROOTS. c. WHEREVER POSSIBLE, LAY SOD WITH THE LONG EDGES PARALLEL TO THE CONTOUR AND WITH STAGGERING JOINTS. ROLL AND TAMP, PEG OR OTHERWISE SECURE THE SOD TO PREVENT SLIPPAGE ON SLOPES. ENSURE SOLID CONTACT EXISTS BETWEEN SOD ROOTS AND THE UNDERLYING SOIL SURFACE. WATER THE SOD IMMEDIATELY FOLLOWING ROLLING AND TAMPING UNTIL THE UNDERSIDE OF THE NEW SOD PAD AND SOIL SURFACE
- BELOW THE SOD ARE THOROUGHLY WET. COMPLETE THE OPERATIONS OF LAYING, TAMPING AND IRRIGATING FOR ANY PIECE OF SOD WITHIN EIGHT HOURS. SOD MAINTENANCE
- a. IN THE ABSENCE OF ADEQUATE RAINFALL, WATER DAILY DURING THE FIRST WEEK OR AS OFTEN AND SUFFICIENTLY AS NECESSARY TO MAINTAIN MOIST SOIL TO A DEPTH OF 4 INCHES. WATER SOD DURING THE HEAT OF THE DAY TO PREVENT WILTING. b. AFTER THE FIRST WEEK, SOD WATERING IS REQUIRED AS NECESSARY TO MAINTAIN ADEQUATE MOISTURE CONTENT.
- c. DO NOT MOW UNTIL THE SOD IS FIRMLY ROOTED. NO MORE THAN ½ OF THE GRASS LEAF MUST BE REMOVED BY THE INITIAL CUTTING OR SUBSEQUENT CUTTINGS. MAINTAIN GRASS HEIGHT AT LEAST 3 INCHES UNLESS OTHERWISE SPECIFIED.

SOIL PREPARATION, TOPSOILING, AND SOIL AMENDMENTS

A. SOIL PREPARATION 1. TEMPORARY STABILIZATION

- a. SEEDBED PREPARATION CONSISTS OF LOOSENING SOIL TO A DEPTH OF 3 TO 5 INCHES BY MEANS OF SUITABLE AGRICULTURAL OR CONSTRUCTION FOUIPMENT, SUCH AS DISC HARROWS OR CHISEL PLOWS OR RIPPERS MOUNTED ON CONSTRUCTION FOUIPMENT, AFTE THE SOIL IS LOOSENED, IT MUST NOT BE ROLLED OR DRAGGED SMOOTH BUT LEFT IN THE ROUGHENED CONDITION. SLOPES 3:1 OR FLATTER ARE TO BE TRACKED WITH RIDGES RUNNING PARALLEL TO THE CONTOUR OF THE SLOPE. b. APPLY FERTILIZER AND LIME AS PRESCRIBED ON THE PLANS
- c. INCORPORATE LIME AND FERTILIZER INTO THE TOP 3 TO 5 INCHES OF SOIL BY DISKING OR OTHER SUITABLE MEANS. PERMANENT STABILIZATION a. A SOIL TEST IS REQUIRED FOR ANY EARTH DISTURBANCE OF 5 ACRES OR MORE. THE MINIMUM SOIL CONDITIONS REQUIRED FOR PERMANENT VEGETATIVE ESTABLISHMENT ARE:
- L SOIL PH BETWEEN 6.0 AND 7.0 I SOLUBLE SALTS LESS THAN 500 PARTS PER MILLION (PPM) III. SOIL CONTAINS LESS THAN 40 PERCENT CLAY BUT ENOUGH FINE GRAINED MATERIAL (GREATER THAN 30 PERCENT SILT PLUS CLAY) TO PROVIDE THE CAPACITY TO HOLD A MODERATE AMOUNT OF MOISTURE, AN EXCEPTION: IF LOVEGRASS WILL BE PLANTED, THEN A SANDY
- SOIL (LESS THAN 30 PERCENT SILT PLUS CLAY) WOULD BE ACCEPTABLE IV. SOIL CONTAINS 1.5 PERCENT MINIMUM ORGANIC MATTER BY WEIGHT. V. SOIL CONTAINS SUFFICIENT PORE SPACE TO PERMIT ADEQUATE ROOT PENETRATION. b. APPLICATION OF AMENDMENTS OR TOPSOIL IS REQUIRED IF ON-SITE SOILS DO NOT MEET THE ABOVE CONDITIONS.
- c. GRADED AREAS MUST BE MAINTAINED IN A TRUE AND EVEN GRADE AS SPECIFIED ON THE APPROVED PLAN, THEN SCARIFIED OR OTHERWISE LOOSENED TO A DEPTH OF 3 TO 5 INCHES d. APPLY SOIL AMENDMENTS AS SPECIFIED ON THE APPROVED PLAN OR AS INDICATED BY THE RESULTS OF A SOIL TEST. e. MIX SOIL AMENDMENTS INTO THE TOP 3 TO 5 INCHES OF SOIL BY DISKING OR OTHER SUITABLE MEANS. RAKE LAWN AREAS TO SMOOTH THE SURFACE, REMOVE LARGE OBJECTS LIKE STONES AND BRANCHES, AND READY THE AREA FOR SEED APPLICATION. LOOSEN SURFACE SOIL BY DRAGGING WITH A HEAVY CHAIN OR OTHER EQUIPMENT TO ROUGHEN THE SURFACE WHERE SITE CONDITIONS WILL NOT PERMIT NORMAL SEEDBED PREPARATION. TRACK SLOPES 3:1 OR FLATTER WITH TRACKED EQUIPMENT LEAVING THE SOIL IN AN IRREGULAR CONDITION WITH RIDGES RUNNING PARALLEL TO THE CONTOUR OF THE SLOPE. LEAVE THE TOP 1 TO 3 INCHES OF SOIL LOOSE AND FRIABLE. SEEDBED LOOSENING MAY BE UNNECESSARY ON NEWLY DISTURBED AREAS.

B. TOPSOILING 1. TOPSOIL IS PLACED OVER PREPARED SUBSOIL PRIOR TO ESTABLISHMENT OF PERMANENT VEGETATION. THE PURPOSE IS TO PROVIDE A

- SUITABLE SOIL MEDIUM FOR VEGETATIVE GROWTH. SOILS OF CONCERN HAVE LOW MOISTURE CONTENT, LOW NUTRIENT LEVELS, LOW PH, MATERIALS TOXIC TO PLANTS, AND/OR UNACCEPTABLE SOIL GRADATION. . TOPSOIL SALVAGED FROM AN EXISTING SITE MAY BE USED PROVIDED IT MEETS THE STANDARDS AS SET FORTH IN THESE SPECIFICATIONS. YPICALLY, THE DEPTH OF TOPSOIL TO BE SALVAGED FOR A GIVEN SOIL TYPE CAN BE FOUND IN THE REPRESENTATIVE SOIL PROFILE
- SECTION IN THE SOIL SURVEY PUBLISHED BY USDA-NRCS. 3. TOPSOILING IS LIMITED TO AREAS HAVING 2:1 OR FLATTER SLOPES WHERE: a. THE TEXTURE OF THE EXPOSED SUBSOIL/PARENT MATERIAL IS NOT ADEQUATE TO PRODUCE VEGETATIVE GROWTH.
- b. THE SOIL MATERIAL IS SO SHALLOW THAT THE ROOTING ZONE IS NOT DEEP ENOUGH TO SUPPORT PLANTS OR FURNISH CONTINUING SUPPLIES OF MOISTURE AND PLANT NUTRIENTS. c. THE ORIGINAL SOIL TO BE VEGETATED CONTAINS MATERIAL TOXIC TO PLANT GROWTH. d. THE SOIL IS SO ACIDIC THAT TREATMENT WITH LIMESTONE IS NOT FEASIBLE.
- 4. AREAS HAVING SLOPES STEEPER THAN 2:1 REQUIRE SPECIAL CONSIDERATION AND DESIGN 5. TOPSOIL SPECIFICATIONS: SOIL TO BE USED AS TOPSOIL MUST MEET THE FOLLOWING CRITERIA

C. SOIL AMENDMENTS (FERTILIZER AND LIME SPECIFICATIONS)

- a. TOPSOIL MUST BE A LOAM, SANDY LOAM, CLAY LOAM, SILT LOAM, SANDY CLAY LOAM, OR LOAMY SAND. OTHER SOILS MAY BE USED IF RECOMMENDED BY AN AGRONOMIST OR SOIL SCIENTIST AND APPROVED BY THE APPROPRIATE APPROVAL AUTHORITY. TOPSOIL MUST NOT BE A MIXTURE OF CONTRASTING TEXTURED SUBSOILS AND MUST CONTAIN LESS THAN 5 PERCENT BY VOLUME OF CINDERS, STONES, SLAG, COARSE FRAGMENTS, GRAVEL, STICKS, ROOTS, TRASH, OR OTHER MATERIALS LARGER THAN 11/2 INCHES IN DIAMETER. b. TOPSOIL MUST BE FREE OF NOXIOUS PLANTS OR PLANT PARTS SUCH AS BERMUDA GRASS, QUACK GRASS, JOHNSON GRASS, NUT SEDGE, POISON IVY, THISTLE, OR OTHERS AS SPECIFIED.
- c. TOPSOIL SUBSTITUTES OR AMENDMENTS, AS RECOMMENDED BY A QUALIFIED AGRONOMIST OR SOIL SCIENTIST AND APPROVED BY THE APPROPRIATE APPROVAL AUTHORITY, MAY BE USED IN LIEU OF NATURAL TOPSOIL. 5. TOPSOIL APPLICATION a. EROSION AND SEDIMENT CONTROL PRACTICES MUST BE MAINTAINED WHEN APPLYING TOPSOIL.
- b. UNIFORMLY DISTRIBUTE TOPSOIL IN A 5 TO 8 INCH LAYER AND LIGHTLY COMPACT TO A MINIMUM THICKNESS OF 4 INCHES. SPREADING IS TO BE PERFORMED IN SUCH A MANNER THAT SODDING OR SEEDING CAN PROCEED WITH A MINIMUM OF ADDITIONAL SOIL PREPARATION AND TILLAGE. ANY IRREGULARITIES IN THE SURFACE RESULTING FROM TOPSOILING OR OTHER OPERATIONS MUST BE CORRECTED IN ORDER TO PREVENT THE FORMATION OF DEPRESSIONS OR WATER POCKETS c. TOPSOIL MUST NOT BE PLACED IF THE TOPSOIL OR SUBSOIL IS IN A FROZEN OR MUDDY CONDITION WHEN THE SUBSOIL IS EXCESSIVELY WET OR IN A CONDITION THAT MAY OTHERWISE BE DETRIMENTAL TO PROPER GRADING AND SEEDBED PREPARATION.
- 1. SOIL TESTS MUST BE PERFORMED TO DETERMINE THE EXACT RATIOS AND APPLICATION RATES FOR BOTH LIME AND FERTILIZER ON SITES HAVING DISTURBED AREAS OF 5 ACRES OR MORE. SOIL ANALYSIS MAY BE PERFORMED BY A RECOGNIZED PRIVATE OR COMMERCIAL
- LABORATORY, SOIL SAMPLES TAKEN FOR ENGINEERING PURPOSES MAY ALSO BE USED FOR CHEMICAL ANALYSES. 2. FERTILIZERS MUST BE UNIFORM IN COMPOSITION, FREE FLOWING AND SUITABLE FOR ACCURATE APPLICATION BY APPROPRIATE EQUIPMENT. MANURE MAY BE SUBSTITUTED FOR FERTILIZER WITH PRIOR APPROVAL FROM THE APPROPRIATE APPROVAL AUTHORITY. FERTILIZERS MUST
- ALL BE DELIVERED TO THE SITE FULLY LABELED ACCORDING TO THE APPLICABLE LAWS AND MUST BEAR THE NAME, TRADE NAME OR RADEMARK AND WARRANTY OF THE PRODUCER 3. LIME MATERIALS MUST BE GROUND LIMESTONE (HYDRATED OR BURNT LIME MAY BE SUBSTITUTED EXCEPT WHEN HYDROSEEDING) WHICH CONTAINS AT LEAST 50 PERCENT TOTAL OXIDES (CALCIUM OXIDE PLUS MAGNESIUM OXIDE). LIMESTONE MUST BE GROUND TO SUCH FINENESS
- THAT AT LEAST 50 PERCENT WILL PASS THROUGH A #100 MESH SIEVE AND 98 TO 100 PERCENT WILL PASS THROUGH A #20 MESH SIEVE. 4. LIME AND FERTILIZER ARE TO BE EVENLY DISTRIBUTED AND INCORPORATED INTO THE TOP 3 TO 5 INCHES OF SOIL BY DISKING OR OTHER SUITABLE MEANS

---6---

WHERE THE SUBSOIL IS EITHER HIGHLY ACIDIC OR COMPOSED OF HEAVY CLAYS, SPREAD GROUND LIMESTONE AT THE RATE OF 4 TO 8 TONS/ACRE(200-400 POUNDS PER 1,000 SQUARE FEET) PRIOR TO THE PLACEMENT OF TOPSOIL.

STANDARD EROSION CONTROL NOTES GENERAL NOTES (FOR EROSION AND SEDIMENT CONTROL PLANS ONLY)

7

- 1. REFER TO "2011 MARYLAND STANDARDS AND SPECIFICATIONS FOR SOIL EROSION AND SEDIMENT CONTROL" FOR STANDARD DETAILS AND DETAILED SPECIFICATIONS OF EACH PRACTICE SPECIFIED HEREIN.
- WITH THE APPROVAL OF THE SEDIMENT CONTROL INSPECTOR, MINOR FIELD ADJUSTMENTS CAN AND WILL BE MADE TO INSURE THE CONTROL OF ANY SEDIMENT. CHANGES IN SEDIMENT CONTROL PRACTICES REQUIRE PRIOR APPROVAL OF THE SEDIMENT CONTROL INSPECTOR AND THE BALTIMORE COUNTY SOIL CONSERVATION DISTRICT.
- 3. AT THE END OF EACH WORKING DAY, ALL SEDIMENT CONTROL PRACTICES WILL BE INSPECTED AND LEFT IN OPERATIONAL CONDITION.
- 4. FOLLOWING INITIAL SOIL DISTURBANCE OR RE-DISTRUBANCE, PERMANENT OR TEMPORARY STABILIZATION MUST BE COMPLETED WITHIN: a.) THREE (3) CALENDAR DAYS AS TO THE SURFACE OF ALL PERIMETER CONTROLS, DIKES, SWALES, DITCHES, PERIMETER SLOPES, AND ALL SLOPES STEEPER THAN THREE HORIZONTAL TO ONE VERTICAL (3:1), AND b.) SEVEN (7) CALENDAR DAYS AS TO ALL OTHER DISTURBED OR GRADED AREAS ON THE PROJECT SITE NOT UNDER ACTIVE
- 5. ANY CHANGES TO THE GRADING PROPOSED ON THIS PLAN REQUIRES RE-SUBMISSION TO BALTIMORE COUNTY SOIL CONSERVATION DISTRICT APPROVAL.
- 6. DUST CONTROL WILL BE PROVIDED FOR ALL DISTURBED AREAS. REFER TO "2011 MARYLAND STANDARDS AND SPECIFICATIONS FOR SOIL EROSION AND SEDIMENT CONTROL", PG. H.22, FOR ACCEPTABLE METHODS SPECIFICATIONS FOR DUST CONTROL.
- 7. ANY VARIATIONS FROM THE SEQUENCE OF OPERATIONS STATED ON THIS PLAN REQUIRES THE APPROVAL OF THE SEDIMENT CONTROL INSPECTOR AND THE BALTIMORE COUNTY SOIL CONSERVATION DISTRICT PRIOR TO THE INITIATION OF THE CHANGE.
- 8. EXCESS CUT OR BORROW MATERIAL SHALL GO TO, OR COME FROM, RESPECTIVELY, A SITE WITH AN OPEN GRADING PERMIT AND APPROVED SEDIMENT CONTROL PLAN. 9. THE FOLLOWING ITEM MAY BE USED AS APPLICABLE: REFER TO "MARYLAND GUIDELINES TO
- WATERWAY CONSTRUCTION" BY THE WATER MANAGEMENT ADMINISTRATION OF THE MARYLAND DEPARTMENT OF THE ENVIRONMENT, REVISED NOVEMBER 2000, FOR STANDARD DETAILS AND DETAILED SPECIFICATIONS OF EACH PRACTICE HEREIN FOR WATERWAY CONSTRUCTION. 10. PUMPING SEDIMENT-LADEN WATER INTO WATERS OF THE STATE IS STRICTLY PROHIBITED. ANY
- PORTABLE DEWATERING DEVICE MUST BE LOCATED WITHIN THE LIMIT OF DISTURBANCE. 11. SITE INFORMATION TOTAL AREA OF SITE. TOTAL LIMITS OF DISTURBANCE .. TOTAL CUT .
- TOTAL FILL NET FILL ... * THE CUT/FILL CALCULATIONS SHOWN ARE FOR SEDIMENT CONTROL PURPOSES ONLY THE CONTRACTOR SHALL DEVELOP HIS/HER OWN QUANTITIES FOR BIDDING PURPOSES.

297.508 ACRESX S.F. / X ACRES X CUBIC YARDS .. X CUBIC YARDS

. X CUBIC YARDS

SEQUENCE OF OPERATIONS

9

1. NOTIFY BALTIMORE COUNTY DEPARTMENT OF PERMITS, APPROVALS AND INSPECTIONS, SEDIMENT CONTROL, (410) 887-3226 AT LEAST 48 HOURS PRIOR TO BEGINNING WORK. 2. IF APPLICABLE, ORANGE HIGH VISIBILITY FENCE SHALL BE MANUALLY INSTALLED ALONG THE LIMITS

- 10 ----

11

- OF DISTURBANCE, WHERE THE LIMIT IS WITHIN 50 FEET OF THE FOREST BUFFER / CONSERVATION EASEMENT. THIS SHALL BE COMPLETED BY AND INSPECTED. 3. CLEAR AND GRUB AND INSTALL FOR SEDIMENT & EROSION CONTROL MEASURES ONLY. CONTROLS
- INCLUDE STABILIZED CONSTRUCTION ENTRANCE, TREE PROTECTION, SILT FENCE, SUPER SILT FENCE, SILT FENCE CHECK DAM AND INLET PROTECTION FOR EXISTING INLETS.
- 4. NOTIFY BALTIMORE COUNTY DEPARTMENT OF PERMITS, APPROVALS AND INSPECTIONS, SEDIMENT CONTROL, UPON COMPLETION OF SAID INSTALLATION.
- 5. WITH THE APPROVAL OF BALTIMORE COUNTY DEPARTMENT OF PERMITS, APPROVALS AND INSPECTIONS, SEDIMENT CONTROL, AND THE SEDIMENT CONTROL INSPECTOR, CLEAR AND GRUB AND GRADE AS NECESSARY FOR UTILITY CONSTRUCTION (SANITARY, STORM WATER, ELECTRICAL, TELEPHONE, CHILLED WATER) AND NEW BUILDING ADDITIONS. ROUGH GRADE FOR STORM WATER MANAGEMENT FACILITIES, DO NOT EXCAVATE MORE THAN 1 FOOT ABOVE SUB-GRADE ELEVATION. SEE PLAN FOR AREAS REQUIRING DAILY STABILIZATION. SEE MAINTENANCE NOTE.
- 6. BEGIN CONSTRUCTION OF BUILDING ADDITIONS AND RETAINING WALLS.
- 7. CONSTRUCT NEW UTILITIES. INSTALL INLET PROTECTION AS SOON AS INLETS ARE CONSTRICTED
- 8. CONSTRUCT CONCRETE PADS, NEW STAIRS AND WALKS.
- 9. STABILIZE ALL CONTRIBUTING AREA TO SEDIMENT CONTROLS.
- 10. WITH NOAA FORECASTED 3 DAY DRY PERIOD, EXCAVATE FOR SWM FACILITY (IES) AND CONSTRUCT PER STORM WATER MANAGEMENT DETAILS ON SHEET C401 & C402. INSTALL FINAL PLANTINGS. STABILIZE AREA AROUND FACILITIES WITH SOD OR SOIL STABILIZATION MATTING.
- 11. UPON STABILIZATION OF THE SITE WITH ESTABLISHED VEGETATION AND WITH PERMISSION OF THE SEDIMENT CONTROL INSPECTOR, REMOVE SEDIMENT CONTROL MEASURES AND STABILIZE THOSE AREAS DISTURBED BY THIS REMOVAL.
- 12. SUBMIT AS-BUILT AND CERTIFICATION OF STORM WATER FACILITIES TO BALTIMORE COUNTY.

OWNER'S/DEVELOPER'S CERTIFICATION: "I/WE HEREBY CERTIFY THAT ANY CLEARING, GRADING, CONSTRUCTION AND/OR DEVELOPMENT WILL BE DONE PURSUANT TO THIS PLAN AND THAT ANY RESPONSIBLE PERSONNEL INVOLVED IN THIS CONSTRUCTION WILL HAVE A CERTIFICATE OF ATTENDANCE AT A MARYLAND DEPARTMENT OF THE ENVIRONMENT APPROVED TRAINING PROGRAM FOR THE CONTROL SEDIMENT AND EROSION BEFORE BEGINNING THE PROJECT. I/WE ALSO CERTIFY THAT THE SITE WILL BE INSPECTED AT THE END OF EACH WORKING DAY, AND THAT ANY NEEDED

MAINTENANCE WILL BE COMPLETED SO AS TO INSURE THAT ALL SEDIMENT CONTROL PRACTICES ARE LEFT IN OPERATIONAL CONDITION. I/WE AUTHORIZE THE RIGHT OF ENTRY FOR PERIODIC ON-SITE EVALUATION BY THE BALTIMORE COUNTY SOIL CONSERVATION DISTRICT BOARD OF SUPERVISORS OR THEIR AUTHORIZED AGENTS.

SIGNATURE OWNER/DEVELOPER

PRINTED NAME

TITLE

DATE

CONSULTANTS CERTIFICATION: "I CERTIFY THAT THIS PLAN OF EROSION AND SEDIMENT CONTROL REPRESENTS A PRACTICAL AND WORKABLE PLAN BASED ON MY PERSONAL KNOWLEDGE OF THE SITE, AND THAT THIS PLAN WAS PREPARED IN ACCORDANCE WITH THE REQUIREMENTS OF THE BALTIMORE COUNTY SOIL CONSERVATION DISTRICT AND THE CURRENT STATE OF MARYLAND SPECIFICATIONS FOR SOIL EROSION AND SEDIMENT CONTROL. I HAVE REVIEWED THIS EROSION AND SEDIMENT CONTROL PLAN WITH THE OWNER."

-- 10 ---

SIGNATURE

BLAINE W. LINKOUS PRINT NAME

9

DATE

34682

MD LICENSE NO.

NOTE TO CONTRACTOR: SEDIMENT AND EROSION CONTROL SHALL BE STRICTLY ENFORCED.

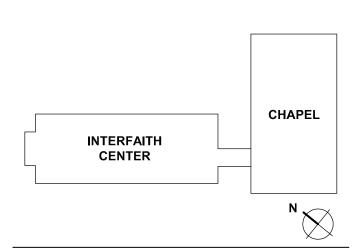
BALTIMORE COUNTY SOIL CONSERVATION DISTRICT APPROVED FOR SEDIMENT CONTROL

DATE

11

DRAWING NUMBER

EROSION AND SEDIMENT
CONTROL NOTES


DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION **ISSUE DATE:** 04/28/17 SCALE: JOB NO .: 21641.00 **DRAWN BY:** M.L.H.

CONSTRUCTION

ARCHITECTS + PLANNERS

REVISIONS DESCRIPTION REV. # DATE KEY PLAN

TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

COMMISSIONING KIBART

www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

HANOVER, MD 21076 410.712.0390

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

410.347.8500 www.asg-architects.com

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

LANDSCAPE ARCHITECT AYERS SAINT GROSS

BALTIMORE, MD 21286 410 512 4500 www.wbcm.com

www.morabitoconsultants.com CIVIL ENGINEER WBCM

410.467.2377

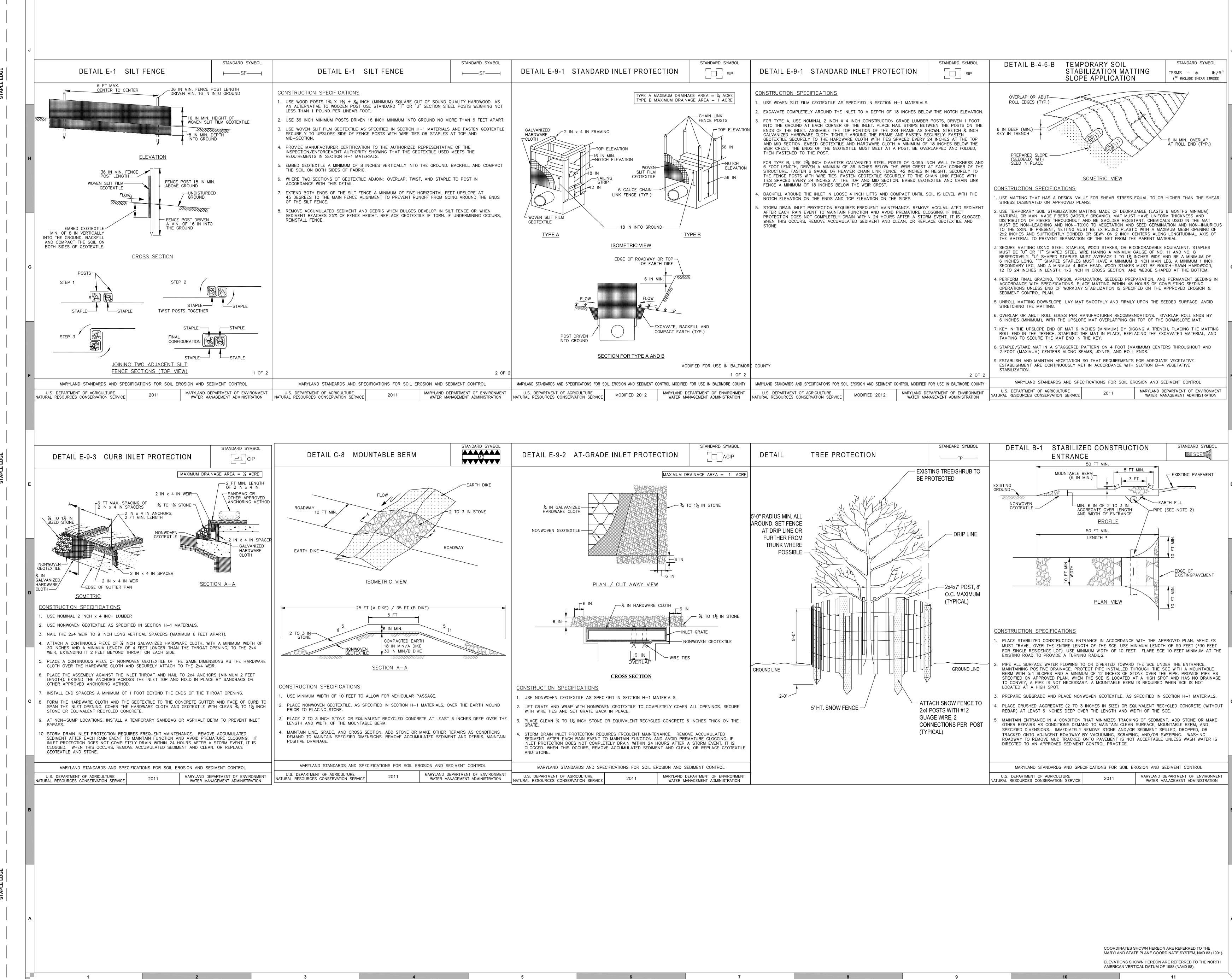
300 EAST JOPPA ROAD, SUITE 200

SPARKS, MD 21152

952 RIDGEBROOK ROAD, SUITE 1700

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

1306 CONCOURSE DRIVE, SUITE 100


1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com **M/E/P & FIRE PROTECTION ENGINEER** MUELLER ASSOCIATES

BALTIMORE MD 21204 PROJECT TEAM ARCHITECT AYERS SAINT GROSS

GOUCHER COLLEGE 1021 DULANEY VALLEY RD

CENTER

GOLDSMITH INTERFAITH

1

- 4

5

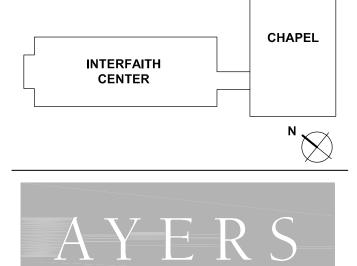
6

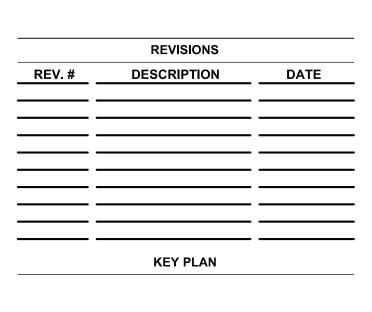
7

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

50% CONSTRUCTION DOCUMENTS DRAWING NAME EROSION AND SEDIMENT CONTROL DETAILS


PROJECT DESIGN PHASE


DRAWN BY:

DRAWING INFORMATION **ISSUE DATE:** 04/28/17 SCALE: AS SHOWN JOB NO.: 21641.00

M.L.H.

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410 750 2246 www.koffel.com

www.spexsys.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

IT / AV / SECURITY

www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

MUELLER ASSOCIATES LINTHICUM, MD 21090 410 646 4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

www.asg-architects.com 1306 CONCOURSE DRIVE, SUITE 100

M/E/P & FIRE PROTECTION ENGINEER

952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152 410.467.2377

www.morabitoconsultants.com

CIVIL ENGINEER

WBCM

300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

410.512.4500

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

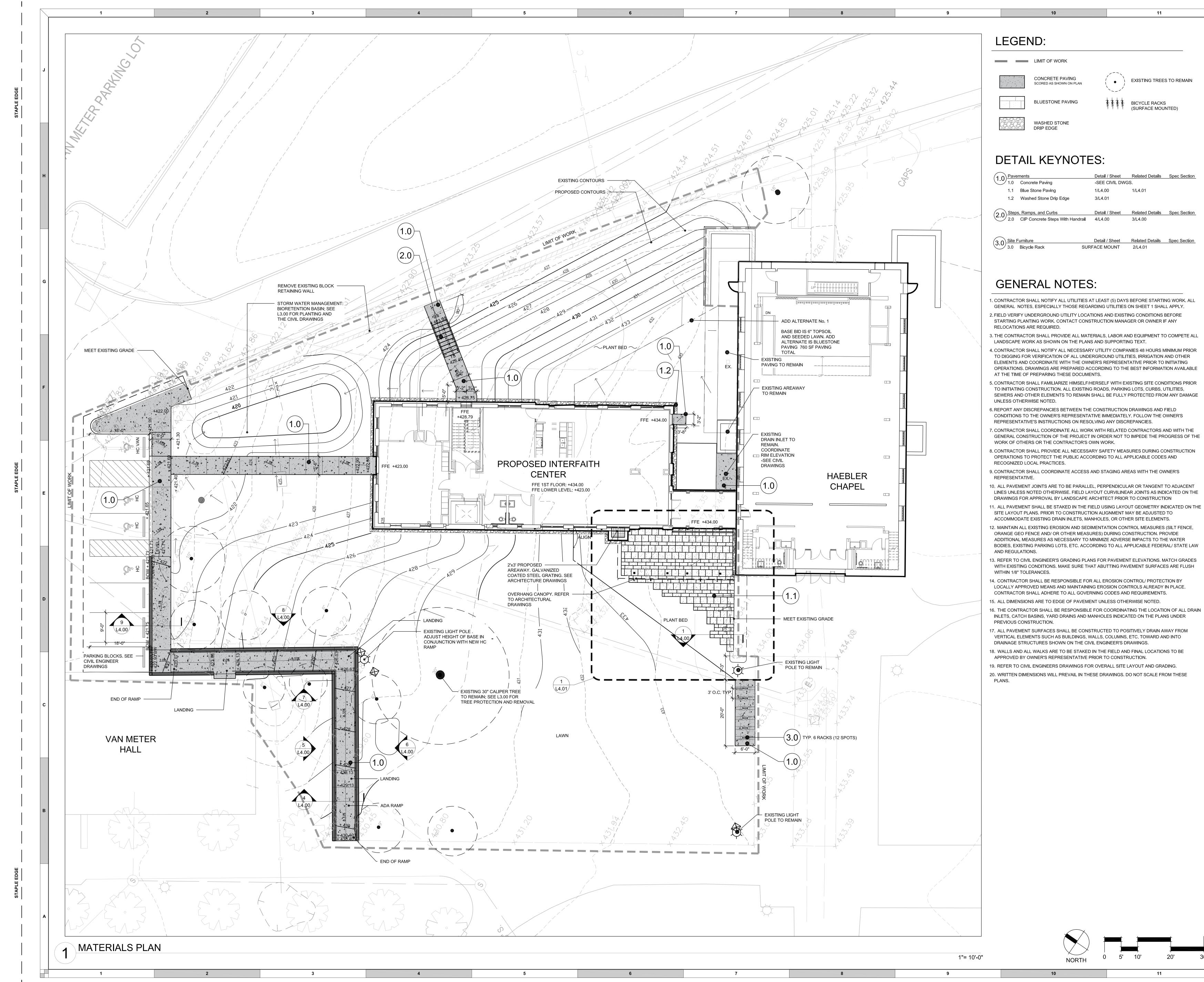
GOLDSMITH INTERFAITH CENTER

GOUCHER COLLEGE

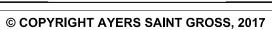
1021 DULANEY VALLEY RD

BALTIMORE MD 21204

PROJECT TEAM


ARCHITECT

GOUCHER


10

9

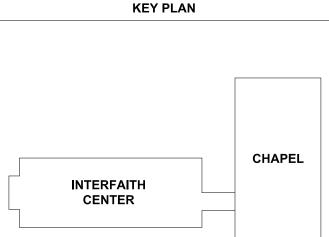
11

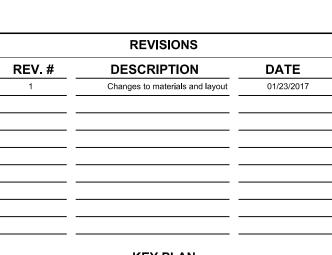
- 30'

DRAWN BY:	NG
PROJECT DESIGN PHASE	
50% CONSTRUCTION	
DRAWINGS	
DRAWING NAME	
MATERIALS PLAN	

NOT FOR CONSTRUCTION

DRAWING INFORMATION


04/28/17 1"=10'-0'


21641.00

ISSUE DATE:

SCALE: JOB NO.:

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www kibart com CODE CONSULTANT KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

www.spexsys.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

IT / AV / SECURITY

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

STRUCTURAL ENGINEER MORABITO CONSULTANTS SPARKS, MD 21152 410.467.2377

952 RIDGEBROOK ROAD, SUITE 1700 www.morabitoconsultants.com

CIVIL ENGINEER WBCM

300 EAST JOPPA ROAD, SUITE 200

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

PROJECT TEAM

ARCHITECT AYERS SAINT GROSS

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER


MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100

GOUCHER

college-

Prairie dropseed

----2-----

3

4

1

5

KEY	BOTANICAL/COMMON NAME	ROOT	SIZE	SPACING
ВМ	Baptisia 'Midnight' Midnight Prairie Blues	Plug	LP50	12" O.C.
ECH	Echinacea purpurea Purple Cone Flower	Plug	LP50	AS SHOWN
LC	Lobelia cardinalis Cardinal flower	Plug	LP50	AS SHOWN
RH	Rudbeckia hirta Blackeyed Susan	Plug	LP50	AS SHOWN
PHV	Physostegia virginiana Obedient plant	Plug	LP50	12" O.C.
SH	Sporobolus heterolepis Prairie dropseed	Plug	LP50	AS SHOWN
TV	Tradescantia virginiana common Virginia spiderwort	Plug	LP50	18" O.C.

6----

7

8

9

LEGEND

--10----

EXISTING TREE TO REMAIN SEE CIVIL DRAWINGS

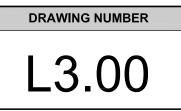
GRASS AND PERENNIAL PLANTINGS SEE PLANTING DETAIL 4/LA4.03

11

SEEDED LAWN

MICRO-BIORETENTION FLOOR MIX SEE PLANTING DETAIL 2/LA4.03

GENERAL NOTES:


- 1. CONTRACTOR SHALL NOTIFY ALL UTILITIES AT LEAST (5) DAYS BEFORE STARTING WORK. ALL GENERAL NOTES, ESPECIALLY THOSE REGARDING UTILITIES ON SHEET 1 SHALL APPLY. 2. FIELD VERIFY UNDERGROUND UTILITY LOCATIONS AND EXISTING CONDITIONS BEFORE
- STARTING PLANTING WORK. CONTACT CONSTRUCTION MANAGER OR OWNER IF ANY RELOCATIONS ARE REQUIRED.
- 3. THE CONTRACTOR SHALL PROVIDE ALL MATERIALS, LABOR AND EQUIPMENT TO COMPETE ALL LANDSCAPE WORK AS SHOWN ON THE PLANS AND SUPPORTING TEXT.
- 4. CONTRACTOR SHALL NOTIFY ALL NECESSARY UTILITY COMPANIES 48 HOURS MINIMUM PRIOR TO DIGGING FOR VERIFICATION OF ALL UNDERGROUND UTILITIES, IRRIGATION AND OTHER ELEMENTS AND COORDINATE WITH THE OWNER'S REPRESENTATIVE PRIOR TO INITIATING OPERATIONS. DRAWINGS ARE PREPARED ACCORDING TO THE BEST INFORMATION AVAILABLE AT THE TIME OF PREPARING THESE DOCUMENTS.
- 5. CONTRACTOR SHALL FAMILIARIZE HIMSELF/HERSELF WITH EXISTING SITE CONDITIONS PRIOR TO INITIATING CONSTRUCTION. ALL EXISTING ROADS, PARKING LOTS, CURBS, UTILITIES, SEWERS AND OTHER ELEMENTS TO REMAIN SHALL BE FULLY PROTECTED FROM ANY DAMAGE UNLESS OTHERWISE NOTED.
- 6. REPORT ANY DISCREPANCIES BETWEEN THE CONSTRUCTION DRAWINGS AND FIELD CONDITIONS TO THE OWNER'S REPRESENTATIVE IMMEDIATELY. FOLLOW THE OWNER'S REPRESENTATIVE'S INSTRUCTIONS ON RESOLVING ANY DISCREPANCIES.
- 7. CONTRACTOR SHALL COORDINATE ALL WORK WITH RELATED CONTRACTORS AND WITH THE GENERAL CONSTRUCTION OF THE PROJECT IN ORDER NOT TO IMPEDE THE PROGRESS OF THE WORK OF OTHERS OR THE CONTRACTOR'S OWN WORK.
- 8. CONTRACTOR SHALL PROVIDE ALL NECESSARY SAFETY MEASURES DURING CONSTRUCTION OPERATIONS TO PROTECT THE PUBLIC ACCORDING TO ALL APPLICABLE CODES AND RECOGNIZED LOCAL PRACTICES.
- 9. CONTRACTOR SHALL COORDINATE ACCESS AND STAGING AREAS WITH THE OWNER'S REPRESENTATIVE.
- 10. ALL PAVEMENT JOINTS ARE TO BE PARALLEL, PERPENDICULAR OR TANGENT TO ADJACENT LINES UNLESS NOTED OTHERWISE. FIELD LAYOUT CURVILINEAR JOINTS AS INDICATED ON THE DRAWINGS FOR APPROVAL BY LANDSCAPE ARCHITECT PRIOR TO CONSTRUCTION
- 11. ALL PAVEMENT SHALL BE STAKED IN THE FIELD USING LAYOUT GEOMETRY INDICATED ON THE SITE LAYOUT PLANS. PRIOR TO CONSTRUCTION ALIGNMENT MAY BE ADJUSTED TO ACCOMMODATE EXISTING DRAIN INLETS, MANHOLES, OR OTHER SITE ELEMENTS.
- 12. MAINTAIN ALL EXISTING EROSION AND SEDIMENTATION CONTROL MEASURES (SILT FENCE, ORANGE GEO FENCE AND/ OR OTHER MEASURES) DURING CONSTRUCTION. PROVIDE ADDITIONAL MEASURES AS NECESSARY TO MINIMIZE ADVERSE IMPACTS TO THE WATER BODIES, EXISTING PARKING LOTS, ETC. ACCORDING TO ALL APPLICABLE FEDERAL/ STATE LAW AND REGULATIONS.
- 13. REFER TO CIVIL ENGINEER'S GRADING PLANS FOR PAVEMENT ELEVATIONS. MATCH GRADES WITH EXISTING CONDITIONS. MAKE SURE THAT ABUTTING PAVEMENT SURFACES ARE FLUSH WITHIN 1/8" TOLERANCES.
- 14. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL EROSION CONTROL/ PROTECTION BY LOCALLY APPROVED MEANS AND MAINTAINING EROSION CONTROLS ALREADY IN PLACE. CONTRACTOR SHALL ADHERE TO ALL GOVERNING CODES AND REQUIREMENTS.
- 15. ALL DIMENSIONS ARE TO EDGE OF PAVEMENT UNLESS OTHERWISE NOTED. 16. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING THE LOCATION OF ALL DRAIN INLETS, CATCH BASINS, YARD DRAINS AND MANHOLES INDICATED ON THE PLANS UNDER PREVIOUS CONSTRUCTION.
- 17. ALL PAVEMENT SURFACES SHALL BE CONSTRUCTED TO POSITIVELY DRAIN AWAY FROM VERTICAL ELEMENTS SUCH AS BUILDINGS, WALLS, COLUMNS, ETC. TOWARD AND INTO DRAINAGE STRUCTURES SHOWN ON THE CIVIL ENGINEER'S DRAWINGS.

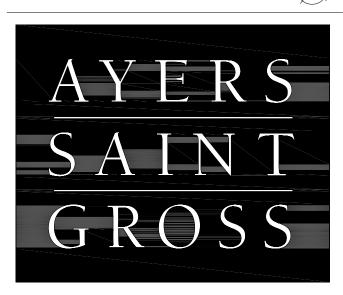
11

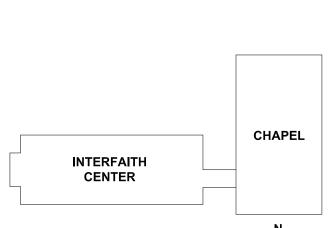
- 18. WALLS AND ALL WALKS ARE TO BE STAKED IN THE FIELD AND FINAL LOCATIONS TO BE APPROVED BY OWNER'S REPRESENTATIVE PRIOR TO CONSTRUCTION.
- 19. REFER TO CIVIL ENGINEERS DRAWINGS FOR OVERALL SITE LAYOUT AND GRADING. 20. WRITTEN DIMENSIONS WILL PREVAIL IN THESE DRAWINGS. DO NOT SCALE FROM THESE PLANS.

10 ----

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NAME		
	PLANTING PLAN	


PROJECT DESIGN PHASE
50% CONSTRUCTION
DRAWINGS
DRAWING NAME


50% CONSTRUCT	ION
PROJECT DESIGN PHASE	
DRAWN BY:	NG
IOB NO.:	21641.00
SCALE:	1"=10'
SSUE DATE:	04/276/17

NOT FOR CONSTRUCTION

DRAWING INFORMATION

ISSUE DATE:

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

KOFFEL ASSOCIATES

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www kibart com CODE CONSULTANT

COMMISSIONING

410.712.0390 www.spexsys.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

410.347.8500 www.asg-architects.com

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

CIVIL ENGINEER

410.467.2377 www.morabitoconsultants.com

300 EAST JOPPA ROAD, SUITE 200

SPARKS, MD 21152

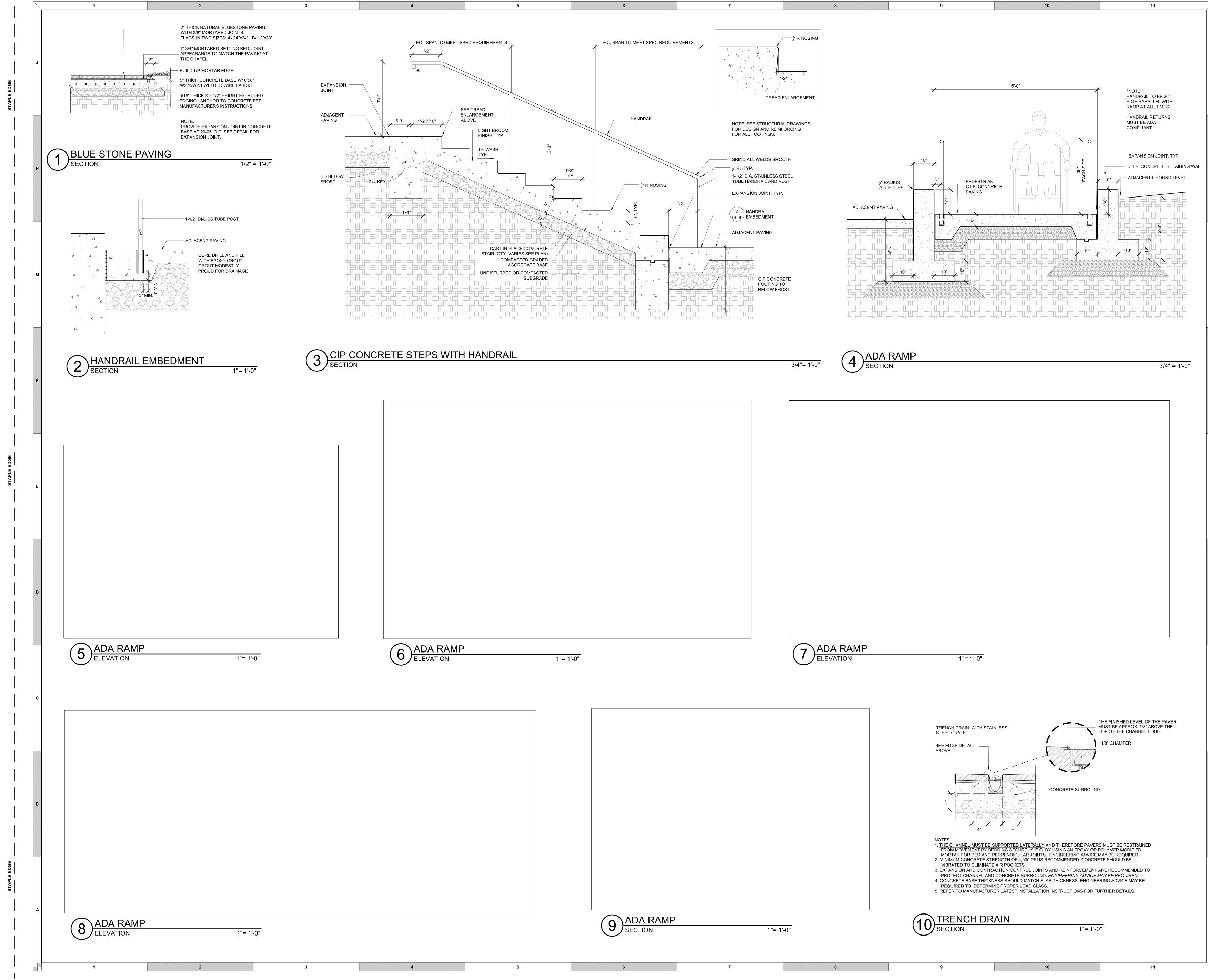
MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

STRUCTURAL ENGINEER

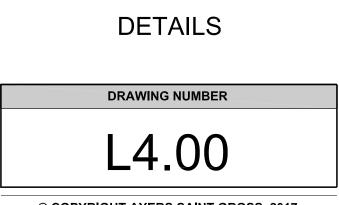
M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100


1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM

GOUCHER COLLEGE


INTERFAITH CENTER AT GOUCHER COLLEGE

GOUCHER

college-

NOT FOR CONSTRUCTION

DRAWING INFORMATION

PROJECT DESIGN PHASE

50% CONSTRUCTION

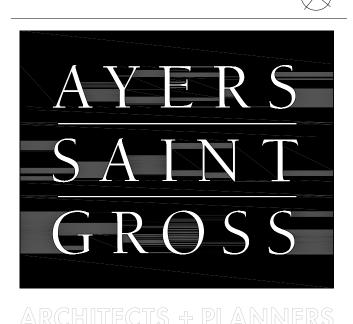
DOCUMENTS

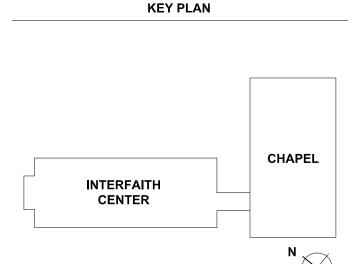
DRAWING NAME

04/28/17

VARIES

21641.00


NG


ISSUE DATE:

SCALE:

JOB NO.:

DRAWN BY:

	410.750.2246 www.koffel.com	
	REVISIONS	
REV. #	DESCRIPTION	DATE

410.712.0390 www.spexsys.com COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204

> 410.494.1111 www.kibart.com

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

SPEXSYS

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

CIVIL ENGINEER

WBCM

300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

410.512.4500

www.wbcm.com

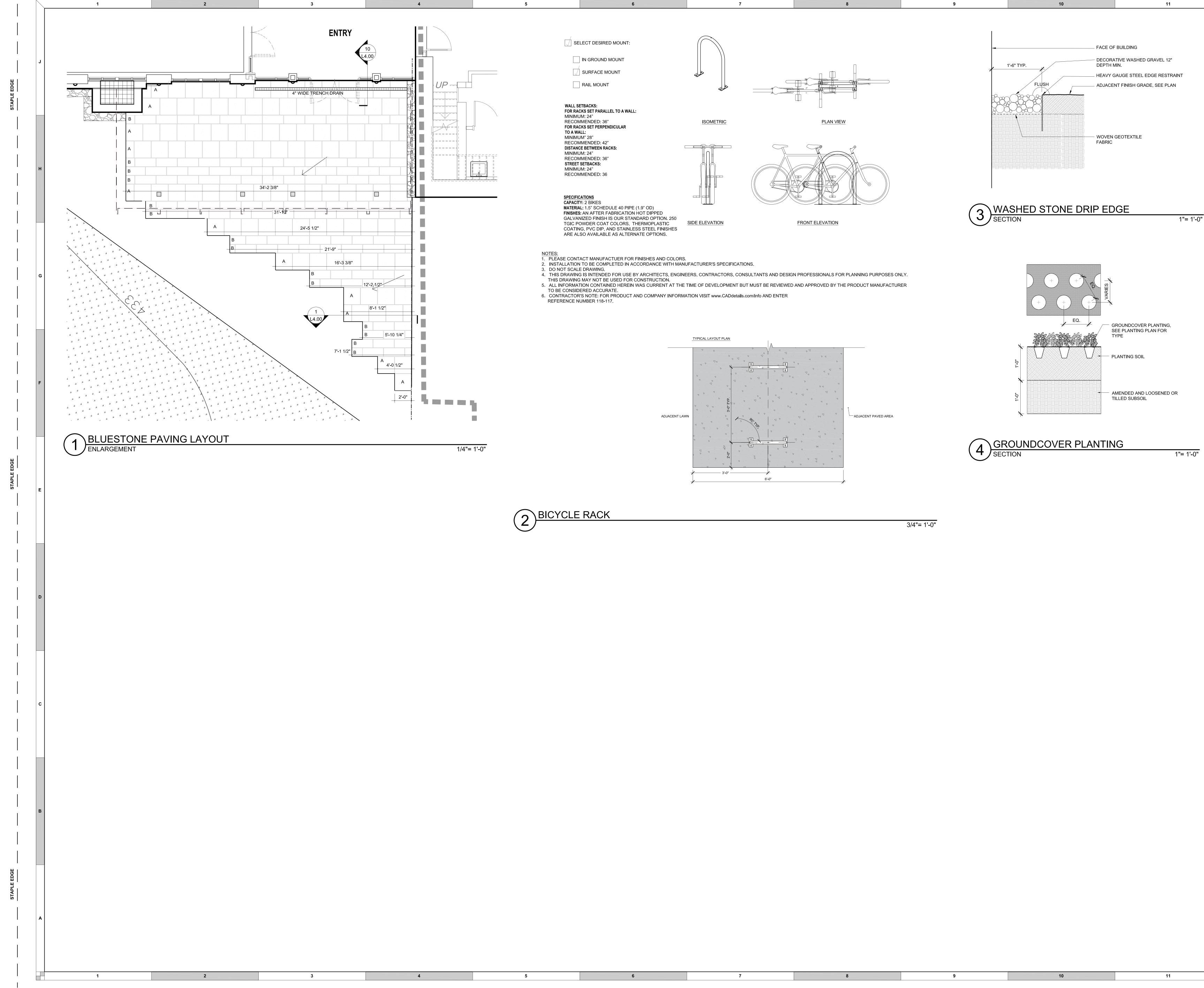
LANDSCAPE ARCHITECT

AYERS SAINT GROSS

MUELLER ASSOCIATES LINTHICUM, MD 21090

410.347.8500 www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 1306 CONCOURSE DRIVE, SUITE 100


AYERS SAINT GROSS

PROJECT TEAM ARCHITECT

GOUCHER COLLEGE

1021 DULANEY VALLEY RD

BALTIMORE MD 21204

NOT FOR CONSTRUCTION

DRAWING INFORMATION

PROJECT DESIGN PHASE

50% CONSTRUCTION

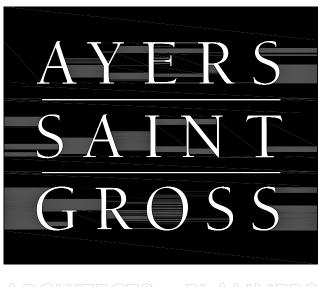
DRAWINGS

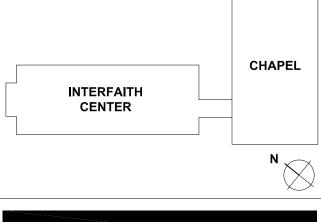
DRAWING NAME

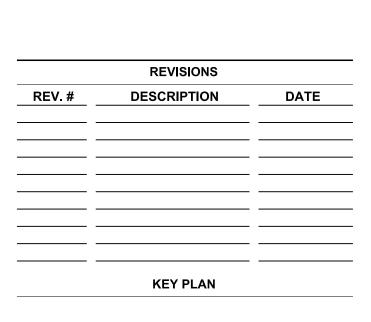
04/28/17

VARIES

21641.00


NG


ISSUE DATE:


SCALE:

JOB NO.:

DRAWN BY:

410.712.0390 www.spexsys.com COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111

www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

SPEXSYS

IT / AV / SECURITY

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS

www.morabitoconsultants.com

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

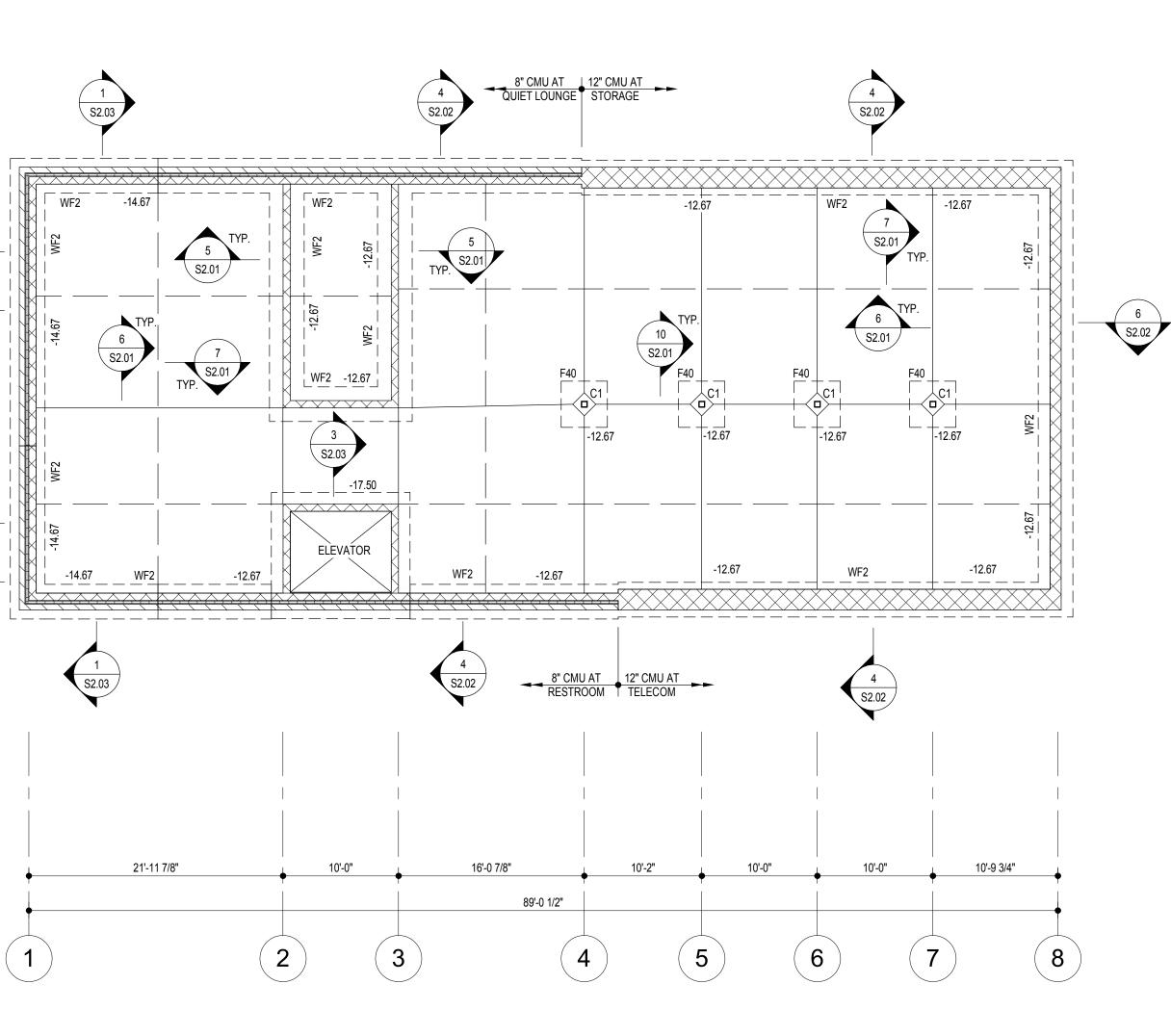
www.asg-architects.com MUELLER ASSOCIATES LINTHICUM, MD 21090

1306 CONCOURSE DRIVE, SUITE 100

410.347.8500

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 M/E/P & FIRE PROTECTION ENGINEER

GOUCHER COLLEGE GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204


PROJECT TEAM

INTERFAITH CENTER AT

GOUCHER

college

			1	2	3		
	STAPLE EDGE	J					
		н					1 \$2.03
		G			B	2 S2.03 1 S2.03 1 S2.03	 VF2
		F			D C 	2 S2.03 1 S2.03	-14.67
	STAPLE EDGE	E					•
		D				MARK C1	COLI
		с					
C:\Revit Files\16072 Goucher Interfaith\16072 - RS2017 - CRS.rvt		в					
	STAPLE EDGE	Α					
4/26/2017 9:35:03 AM							

COLUMN SCHEDULE					
COLUMN SIZE	BASE PLATE SIZE	ANCHOR BOLTS	PEDESTAL SIZE AND REINFORCING	NOTES	
HSS6x6x1/4	12"x 1/2"x 1'-0"	(4)-3/4"Øx 8" LONG	16"x 16" PEDESTAL WITH (4)-#7 VERTICAL	PROVIDE PEDESTAL WHERE SHOWN ON PLAN	

COLUMN SCHEDULE NOTES:

OTHERWISE.

4

3

4

5

6

7

1. FOR ORIENTATION OF COLUMNS, BASE PLATES, LEVEL PLATES, PEDESTALS, AND FOOTINGS - SEE PLAN

2. STRUCTURAL STEEL HSS SHAPES SHALL CONFORM TO ASTM A-500 GRADE B. STRUCTURAL STEEL PLATES SHALL CONFORM TO ASTM A-36 UNLESS NOTED

3. ALL ANCHOR BOLTS SHALL CONFORM TO ASTM F-1554, GRADE 55.

4. IN ADDITION TO DETAILED OUTER PEDESTAL TIES, PROVIDE ALL INTERIOR AND CROSS TIES AS REQUIRED BY ACI-318 LATEST EDITION.

	FOOTING SCHEDULE			
MARK	FOOTING SIZE	REINFORCING		
F30	3'-0" x 3'-0" x 12"	4#5 E.W. BOTTOM		
F40	4'-0" x 4'-0" x 12"	5#5 E.W. BOTTOM		
WF1	12" DEEP x 2'-0" CONTINUOUS	3#5 CONT. WITH #4 TIE BARS AT 24"o/c		
WF2	12" DEEP x 3'-0" CONTINUOUS	4#5 CONT. WITH #4 TIE BARS AT 24"o/c		

	MASONRY WALL SCHEDULE			
FLOOR	BLOCK STRENGTH	VERTICAL REINFORCING		
LL TO GROUND	HIGH STRENGTH	#7 AT 8"		
GROUND TO LEVEL 2	HIGH STRENGTH	#7 AT 16"		
LEVEL 2 TO TRUSS BRG.	HIGH STRENGTH	#7 AT 24"		

MASONRY WALL NOTES

1. FILL ALL REINFORCED MASONRY CELLS 100% SOLID WITH 3000 PSI GROUT.

- 2. LAP ALL #5 VERTICAL REINFORCING 2'-6" MINIMUM, #6 VERTICAL REINFORCING 3'-0" MINIMUM, AND #7 VERTICAL REINFORCING 3'-6" MINIMUM.
- 3. PROVIDE TENSION LAP SPLICE WHERE REQUIRED ON PLAN AND IN TYPICAL DETAILS. 4. PROVIDE FOOTING DOWELS AT WALL FOUNDATIONS SAME SIZE AND SPACING AS
- WALL VERTICAL REINFORCING. PROVIDE LAP SPLICE IN ACCORDANCE WITH NOTES 3 AND 4.
- 5. REINORCING SHOWN ON MASONRY RETAINING WALL DETAILS ON S2.02 SHALL SUPERCEDE AND REPLACE REINFORCING SHOWN IN SCHEDULE ABOVE.

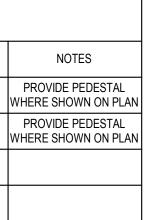
7

6

8

FOUNDATION AND LOWER LEVEL PLAN SCALE: 1/8" = 1'-0" 1. ELEVATION TOP OF STRUCTURAL SLAB ON GRADE = EL. -11.00 (U.N.O.)

 STRUCTURAL SLAB SHALL BE 5" CONCRETE SLAB ON GRADE (fc = 3000 PSI) REINFORCED WITH 6" x 6" - W2.9 / W2.9 WELDED WIRE FABRIC POURED OVER VAPOR BARRIER OVER 4" POROUS FILL. (U.N.O.)


9

10

11

- 3. EXTERIOR SLAB ON GRADE BY LANDSCAPE ARCHITECT. FOR ADDITIONAL INFORMATION SEE LANDSCAPE ARCHITECTURAL DRAWINGS.
- 4. ALL WALL FOOTINGS NOT SPECIFICALLY SHOWN ON PLAN SHALL BE 12" DEEP BY WALL WIDTH WITH 6" PROJECTION ON EACH SIDE OF WALL WITH 2#5 CONT. BARS AND #5 BARS AT 24"o.c.
- 5. ELEVATION BOTTOM OF FOOTING IS SHOWN ON PLAN.
- 6. ASSUMED SOIL BEARING VALUE = 3000 PSF WAS USED IN DESIGN OF THE STRUCTURE. THIS VALUE SHALL BE FIELD VERIFIED BY A REGISTERED GEOTECHNICAL ENGINEER. SEE GEOTECHNICAL ENGINEERING REPORT PREPARED BY HERBST/BENSON & ASSOCIATES DATED JANUARY 6, 2017 FOR ADDITIONAL INFORMATION AND REQUIREMENTS.
- 7. WALL TYPES INDICATED ON PLAN THUS: REINFORCED MASONRY BLOCK WALLS (ASTM C-90)
- 8. STAIRS SHALL BE DESIGNED FOR 100 POUNDS PER SQUARE FOOT LIVE LOAD. SUBMIT SIGNED AND SEALED SHOP DRAWINGS TO ENGINEER FOR REVIEW. SEE ARCHITECTURAL DRAWINGS FOR RISER AND TREAD DIMENSIONS.
- 9. CONTRACTOR SHALL COORDINATE ALL DIMENSIONS AND ELEVATIONS WITH ARCHITECTURAL AND SITE DRAWINGS PRIOR TO CONSTRUCTION.
- 10.PROVIDE FOOTING IN SLAB ON GRADE AT ALL NON-LOAD BEARING BLOCK PARTITIONS PER DETAIL 9 ON S2.01. SEE ARCHITECTURAL DRAWINGS FOR
- LOCATION OF ALL BLOCK PARTITIONS NOT SHOWN ON STRUCTURAL DRAWINGS. 11.SEE MECHANICAL DRAWINGS FOR EXACT SIZE AND LOCATION OF REQUIRED
- EQUIPMENT PADS. SEE DETAIL 3 ON S2.02 FOR ADDITIONAL INFORMATION. 12.MASONRY WALLS SHALL BE 8" MASONRY (fm = 2500 PSI) REINFORCED PER MASONRY WALL SCHEDULE ON \$1.00.12. MASONRY WALLS SHALL BE 8" MASONRY (f'm = 1500 PSI) REINFORCED PER MASONRY WALL SCHEDULE ON S1.00.

9

TENSION LAP SPLICE
5'-3"
5'-3"
5'-3"

© COPYRIGHT AYERS SAINT GROSS, 2017

11

10

DRAWING NUMBER

FOUNDATION AND LOWER LEVEL PLAN

DRAWING NAME

50% CD SET

PROJECT DESIGN PHASE

DRAWING INF	ORMATION			
ISSUE DATE:	04/28/17			
SCALE:	As indicated			
JOB NO.:	16072			
DRAWN BY:	CRS			

NOT FOR CONSTRUCTION

KEY PLAN	
INTERFAITH CENTER	CHAPEL
	N N

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246 www.koffel.com

COMMISSIONING KIBART

410.712.0390 www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

www.morabitoconsultants.com CIVIL ENGINEER WBCM

410.467.2377

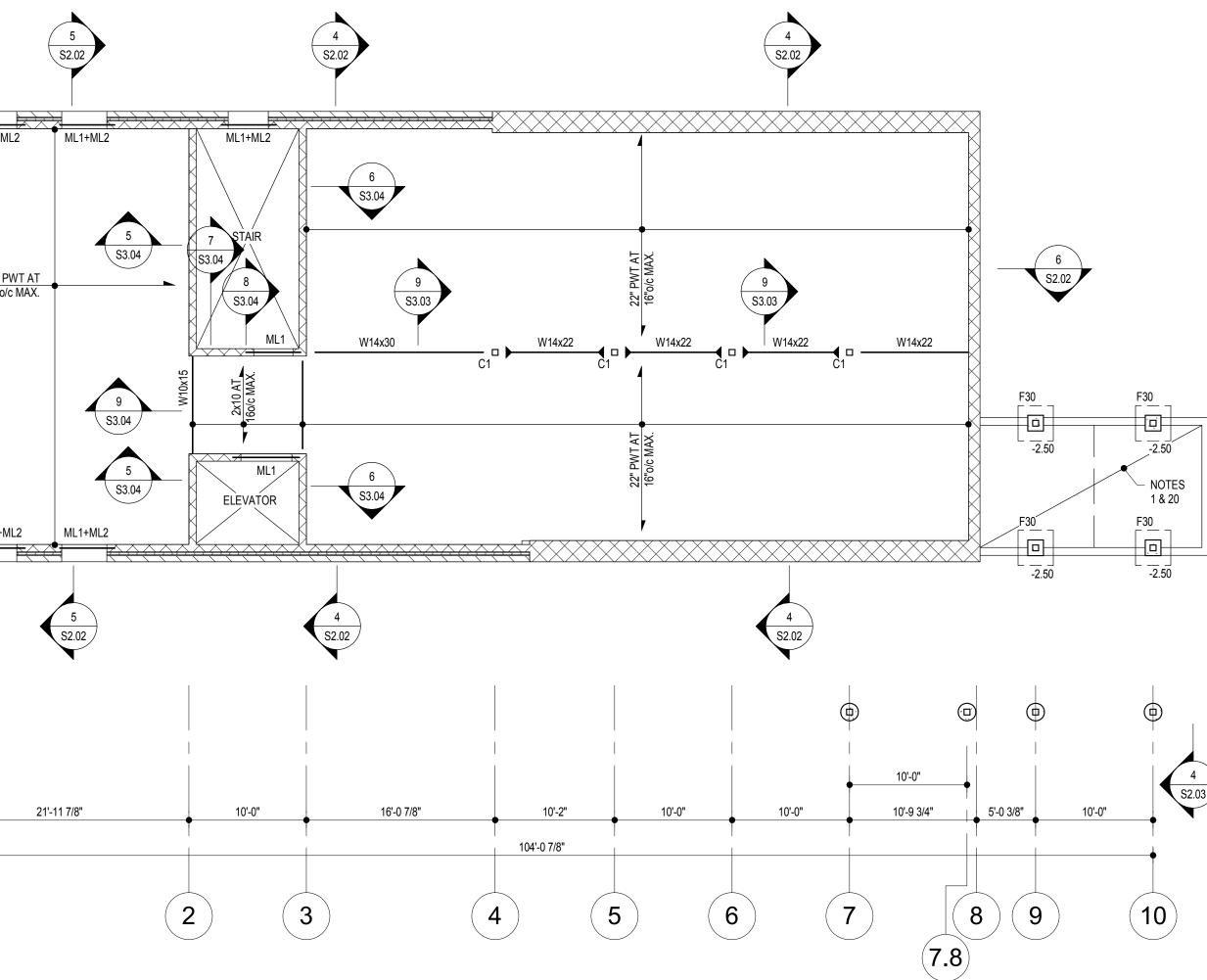
300 EAST JOPPA ROAD, SUITE 200

SPARKS, MD 21152

www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500

MUELLER ASSOCIATES


M/E/P & FIRE PROTECTION ENGINEER

www.asg-architects.com

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

GOUCHER —college—

		1	2	3	
STAPLE EDGE	J	1	2	3	
	G			A 1718-51 1926-52 (C) 180-55 180-	TIM+1-ML1+ML2 CTIM+1-ML CTIM+1-
STAPLE EDGE	E				
	D				
	В				
STAPLE EDGE	A	1	2	3	

7

7

6

5

4

4

5

8

<u>GROUND</u>	LEV	EL	PL/	41

SCALE: 1/8" = 1'-0" 1. ELEVATION TOP OF STRUCTURAL WOOD FRAMED FLOOR SHALL BE 0.00.

10

11

- 2. STRUCTURAL FLOOR SHALL BE 3/4" GYPSUM TOPPING (TYPICAL, REFER TO ARCHITECTURAL DRAWINGS FOR OTHER THICKNESSES) OVER 1/4" ACOUSTIMAT OVER 23/32" TONGUE AND GROOVE EXPOSURE 1 APA GROUP 1 RATED STURD-I-FLOOR NAILED WITH 8d COMMON NAILS AT 6"o/c ALONG PANEL EDGES AND 12"o/c ALONG INTERMEDIATE SUPPORTS. AS AN ALTERNATE, CONTRACTOR MAY GLUE AND NAIL FLOOR SHEATHING TO FLOOR TRUSSES WITH 6d RING OR SCREW SHANK NAILS AT 6"o/c ALONG PANEL EDGES AND 12"o/c ALONG INTERMEDIATE SUPPORTS.
- 3. ELEVATION TOP OF STEEL BEAMS SHOWN ON PLAN = -0.14.

9

- 4. WALL TYPES ARE SHOWN ON PLAN, THUS:
- WOOD STUD WALLS
- REINFORCED MASONRY BLOCK WALLS (ASTM C-90)
- 5. CONTRACTOR SHALL COORDINATE ALL DIMENSIONS AND ELEVATIONS WITH ARCHITECT PRIOR TO CONSTRUCTION.

6. ALL WOOD STUDS SHALL BE NO. 1 / NO. 2 SPRUCE PINE FIR (UNO). APA	RTMENT WOOD STUD BEARING / SHEAR
WALLS BELOW THIRD FLOOR SHALL BE COMPRISED OF THE FOLLOWIN	G, UNLESS NOTED OTHERWISE:

LOCATION	STUD SIZE / SPACING
EXTERIOR	2x8 AT 16"o/c
STAIR SHAFT	2x6 AT 16"o/c
ELEVATOR SHAFT	2x6 AT 16"o/c
NON-BEARING	2x4 AT 24"o/c (UNO)
WOOD STUD BEARING	G WALLS SHOWN ON PLAN SHALL BE BLOCKED AT 4'-0"o/c

7. WOOD TRUSS LAYOUT AS SHOWN ON PLAN IS DIAGRAMMATIC. ALIGN TRUSSES WITH STUDS BELOW WHERE POSSIBLE. COORDINATE ALL TRUSS LOCATIONS WITH MECHANICAL FLOOR PARAMETERS. PROVIDE DOUBLE JOISTS AND HEADERS AT ALL OPENINGS WIDER THAN TRUSS SPACING. CONNECT HEADER TO DOUBLE TRUSS WITH JOIST HANGERS.

8. PRE-ENGINEERED WOOD FLOOR TRUSSES NOTED, THUS:

PWT WOOD TRUSSES AT DEPTH AND SPACING NOTED ON PLAN 9. PRE-ENGINEERED TRUSSES SHALL BE DESIGNED FOR THE FOLLOWING MINIMUM SUPERIMPOSED LIVE AND DEAD LOADS BEYOND THE SELF WEIGHT OF TRUSSES:

FLOOR TYPE	TOP CHORD		BOTTOM CHORD	
	DEAD	LIVE	DEAD	LIVE
COMMON AREAS	15 PSF	100 PSF	5 PSF	0 PSF
	•	•		

WOOD FLOOR TRUSS DEFLECTION SHALL NOT EXCEED L/480 FOR LIVE LOAD AND L/360 FOR TOTAL LOAD. 10.FOR WOOD BEAM AND LINTEL SCHEDULES, REFER TO SHEET S1.01. ALL WOOD BEAMS NOTED, THUS: 'B0' ARE TO BE

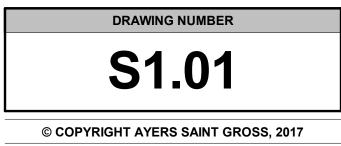
- FLUSH FRAMED WITH FLOOR. ALL WOOD LINTELS NOTED, THUS: 'L0' ARE TO BE ELEVATED AT HEAD OF OPENING. 11.STAIRS SHALL BE DESIGNED FOR 100 POUNDS PER SQUARE FOOT LIVE LOAD. SUBMIT SIGNED AND SEALED SHOP DRAWINGS OF STAIR FRAMING AND HANDRAILS PREPARED BY A REGISTERED PROFESSIONAL ENGINEER FROM THE STATE OF MARYLAND FOR REVIEW.
- 12.MASONRY WALLS SHALL BE 8" MASONRY (fm = 2500 PSI) REINFORCED PER MASONRY WALL SCHEDULE ON S1.00.
- 13.REFER TO ARCHITECTURAL AND MECHANICAL DRAWINGS FOR LOCATIONS AND REQUIREMENTS AT LOUVERED OPENINGS BELOW EXTERIOR WINDOWS. FOR FRAMING MODIFICATIONS AT LOUVERED OPENINGS, SEE DETAIL 14.STRUCTURAL STEEL WIDE FLANGE BEAMS SHALL CONFORM TO ASTM A-992, GRADE 50. HOLLOW STRUCTURAL
- STEEL TUBE SHALL CONFORM TO ASTM A500, GRADE B (Fy=46 KSI). STRUCTURAL STEEL PLATES, ANGLES AND CHANNELS SHALL CONFORM TO ASTM A36. 15.ALL EXPOSED STRUCTURAL STEEL SHALL BE HOT-DIPPED GALVANIZED.
- 16.STAIRS SHALL BE DESIGNED FOR 100 POUNDS PER SQUARE FOOT LIVE LOAD. SUBMIT SIGNED AND SEALED SHOP DRAWINGS TO ENGINEER FOR REVIEW. STAIRS TO BE METAL PAN. SEE ARCHITECTURAL DRAWINGS FOR RISERS AND TREAD DIMENSIONS. ALL STAIR CHANNELS BEARING ON MASONRY WALLS SHALL REQUIRE 6"x 6"x 1/4" BEARING
- PLATES AND 1/2"Ø x 8" LONG ANCHOR BOLT WITH 2" HOOK. 17. PROVIDE DOUBLE 8" WIDE x 8" DEEP CONT. BOND BEAM AROUND PERIMETER OF ELEVATOR AND STAIR WITH 2#5 CONT. BOTTOM REINFORCING EACH COURSE AND FILLED SOLID WITH 3000 PSI GROUT AT EACH FLOOR AND ROOF ELEVATION. PROVIDE 90 DEGREE HOOK BARS AT CORNERS.
- 18.EXTERIOR SLAB ON GRADE BY LANDSCAPE ARCHITECT. FOR ADDITIONAL INFORMATION SEE LANDSCAPE ARCHITECTURAL DRAWINGS.
- 19.FULL CONTINUITY MOMENT CONNECTIONS ARE INDICATED ON PLAN THUS: SHALL HAVE FULL PENETRATION WELDS AT BEAM TO COLUMN TO DEVELOP FULL CAPACITY OF SECTION. SEE DETAIL 6 ON S3.01 FOR ADDITIONAL INFORMATION.
- 20.STRUCTURAL SLAB SHALL BE 5" CONCRETE SLAB ON GRADE (fc = 3000 PSI) REINFORCED WITH 6" x 6" W2.9 / W2.9 WELDED WIRE FABRIC POURED OVER VAPOR BARRIER OVER 4" POROUS FILL. (U.N.O.)

	LINTEL SCHEDULE					
MARK	MEMBER	TYPE	REMARKS			
ML1	(2)-6"x 3 1/2"x 3/8" ANGLE (LLV)		8" MIN. BEARING AT EACH END			
ML2	5"x 5"x 3/4" ANGLE		8" MIN. BEARING AT EACH END			
ML3	W8x28 WITH 16" WIDE x 3/4" THICK CONT. PLATE		16" MIN. BEARING AT EACH END			
L1	(2)-2x6 + FULL-DEPTH BLOCKING AT MIDPOINT	XX	PROVIDE (2)-2x8 JACK STUDS EACH END			
L2	L2 (2)-2x8 + FULL-DEPTH BLOCKING AT MIDPOINT L3 (4)-2x10 + 1/2" PLYWOOD PLATE + 3/4" PLYWOOD PLATE		PROVIDE (2)-2x8 JACK STUDS EACH END			
L3			PROVIDE (2)-2x8 JACK STUDS EACH END			
L4	(4)-2x12 + 1/2" PLYWOOD PLATE + 3/4" PLYWOOD PLATE		PROVIDE (2)-2x8 JACK STUDS EACH END			

LINTEL NOTES

1. REFER TO ARCHITECTURAL DRAWINGS FOR EXACT SIZE AND LOCATION OF WALL OPENINGS.

2. SECURE MULTIPLE SAWN MEMBERS TOGETHER WITH (2) ROWS OF 16d NAILS AT 12"o/c FOR MEMBERS UP TO 12" DEEP AND (3) ROWS OF 16d NAILS FOR MEMBERS GREATER THAN 12" DEEP (UNLESS NOTED OTHERWISE). USE GALVANIZED NAILS FOR ALL EXTERIOR LINTELS.


- 3. ALL WOOD LINTELS EXPOSED TO THE WEATHER SHALL BE PRESSURE TREATED.
- 4. STRUCTURAL WOOD LINTELS SHALL BE NO.1/NO.2 SPRUCE PINE FIR WITH THE FOLLOWING MINIMUM PROPERTIES: Fb = 875 PSI Fc□ = 425 PSI Fv = 135 PSI Ft = 450 PSI Fc|| = 1,150 PSI E =1,400,000 PSI
- 6. CONTRACTOR HAS OPTION TO PROVIDE ADDITIONAL WOOD JOISTS AND PLYWOOD PLATES TO WOOD LINTELS AS NOTED TO ACHEIVE DESIRED THICKNESS.
- 7. SEE PLAN FOR END POST OR END JACK STUDS AND PROVIDE (2) FULL HEIGHT KING STUDS EACH END OF LINTEL.
- SECURE MULTIPLE JAMB STUDS TOGETHER WITH 16d NAILS AT 8"o/c STAGGERED, EACH PLY. 8. FOR ADDITIONAL INFORMATION AT TYPICAL WOOD LINTEL FRAMING, REFER TO DETAILS $\left(\frac{\ell}{S3.02}\right)\left(\frac{8}{S3.02}\right)$
- 9. ALL STRUCTURAL STEEL EXPOSED TO THE WEATHER OR THAT ARE IN CONTACT WITH MASONRY SHALL BE
- HOT-DIPPED GALVANIZED IN ACCORDANCE WITH SPECIFICATION SECTION 05100. 10.PROVIDE 8" MINIMUM BEARING AT EACH END OF ANGLE LINTEL.

S3.02

9

11.WOOD POST AND BUILT-UP WOOD POST TO BEAM CONNECTIONS: PROVIDE CC COLUMN CAP SERIES SIZED ACCORDING TO BEAM WIDTH AND BEARING CONDITION. PROVIDE 5/8" DIA. BOLTS AND WOOD SHIM PLATES AS REQUIRED, SEE DETAIL

10

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated

PROJECT DESIGN PHASE

50% CD SET

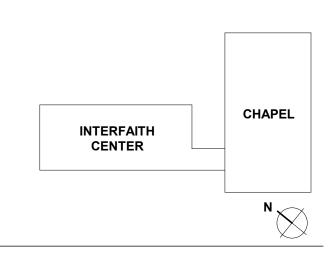
DRAWING NAME

GROUND LEVEL FRAMING

PLAN

16072

CRS


JOB NO.:

11

DRAWN BY:

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
<u> </u>		

KEY PLAN

COMMISSIONING KIBART TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246

www.koffel.com

410.712.0390 www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

IT / AV / SECURITY

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

410.467.2377 www.morabitoconsultants.com **CIVIL ENGINEER** WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS

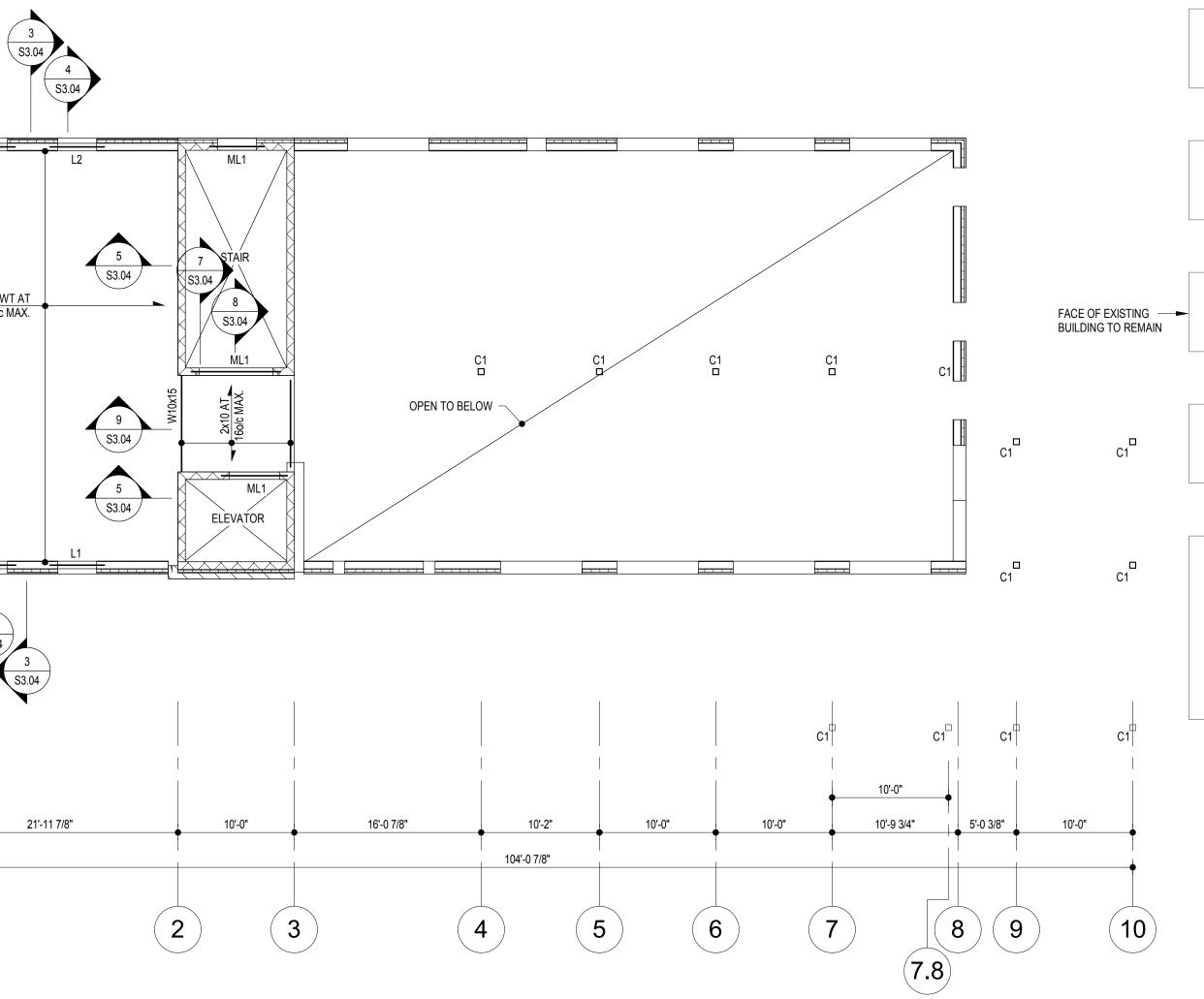
AYERS SAINT GROSS BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500

ARCHITECT 1040 HULL STREET, SUITE 100

M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

www.muellerassoc.com

STRUCTURAL ENGINEER


MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152

PROJECT TEAM

PROJECT INFORMATION

GOUCHER

			1	2		3	
EDGE	 	1					
STAPLE EDGE		4					
					A + -		L2
		G			19-8 1/4"	2 53.04	+ + + + + + + + + + + + + + + + + + +
					B 		+ + + + + + + + + + + + + + + + + + + +
	F	F			D		4 S3.04
STAPLE EDGE							S
U	E	Ξ					
		D					
	 	c					
		В					
STAPLE EDGE							
		A 	1	2		3	

6

7

4

4

5

6

7

5

8

1. ELEVATION TOP OF FRAMED STRUCTURAL SLAB AT HAMBRO FLOOR = EL. 11.33 (U.N.O.) 2. STRUCTURAL FLOOR SHALL BE 3/4" GYPSUM TOPPING (TYPICAL, REFER TO ARCHITECTURAL DRAWINGS FOR OTHER THICKNESSES) OVER 1/4" ACOUSTIMAT OVER 23/32" TONGUE AND GROOVE EXPOSURE 1 APA GROUP 1 RATED STURD-I-FLOOR NAILED WITH 8d COMMON NAILS AT 6"0/c ALONG PANEL EDGES AND 12"0/c ALONG INTERMEDIATE SUPPORTS. AS AN ALTERNATE, CONTRACTOR MAY GLUE AND NAIL FLOOR SHEATHING TO FLOOR TRUSSES WITH 6d RING OR SCREW SHANK NAILS AT 6"o/c ALONG PANEL EDGES AND 12"o/c ALONG INTERMEDIATE SUPPORTS.

10

SCALE: 1/8" = 1'-0"

11

3. ELEVATION TOP OF STEEL BEAMS SHOWN ON PLAN = 11.19.

9

4. WALL TYPES ARE SHOWN ON PLAN, THUS:

SECOND FLOOR FRAMING PLAN

WOOD STUD WALLS

REINFORCED MASONRY BLOCK WALLS (ASTM C-90)

5. CONTRACTOR SHALL COORDINATE ALL DIMENSIONS AND ELEVATIONS WITH ARCHITECT PRIOR TO CONSTRUCTION. 6. ALL WOOD STUDS SHALL BE NO. 1 / NO. 2 SPRUCE PINE FIR (UNO). APARTMENT WOOD STUD BEARING / SHEAR

	WALLS BELOW THIR	D FLOOR SHALL	BE COMPRIS	SED OF THE	FOLĹOWING	G, UNLESS NOTED OTHERWISE:
	LOCATION EXTERIOR STAIR SHAFT ELEVATOR SHAFT NON-BEARING	<u>STUD SIZE / S</u> 2x8 AT 16"o/c 2x6 AT 16"o/c 2x6 AT 16"o/c 2x4 AT 24"o/c (
	WOOD STUD BEARIN	IG WALLS SHOW	N ON PLAN	SHALL BE BL	OCKED AT	4'-0"o/c
7.	POSSIBLE. COORDIN	IATE ALL TRUSS RS AT ALL OPENI	LOCATIONS	WITH MECH	ANICAL FLO	RUSSES WITH STUDS BELOW WHERE OR PARAMETERS. PROVIDE DOUBLE CONNECT HEADER TO DOUBLE TRUSS
8.	PRE-ENGINEERED W	OOD FLOOR TR	JSSES NOT	ED, THUS:		
	PWT WOOD T	RUSSES AT DEP	TH AND SPA	CING NOTED	ON PLAN	
9.	PRE-ENGINEERED T LOADS BEYOND THE				OLLOWING	MINIMUM SUPERIMPOSED LIVE AND DEAD
	FLOOR TYP	F TOP C	HORD	BOTTOM	CHORD]
		DEAD	LIVE	DEAD	LIVE	
	OFFICES	15 PSF	50 PSF	5 PSF	0 PSF	
	WOOD FLOOR TRUS	S DEFLECTION S	HALL NOT E	XCEED L/480) FOR LIVE L	OAD AND L/360 FOR TOTAL LOAD.
10						LWOOD BEAMS NOTED, THUS: 'B0' ARE TO BE E TO BE ELEVATED AT HEAD OF OPENING.

11. STAIRS SHALL BE DESIGNED FOR 100 POUNDS PER SQUARE FOOT LIVE LOAD. SUBMIT SIGNED AND SEALED SHOP DRAWINGS OF STAIR FRAMING AND HANDRAILS PREPARED BY A REGISTERED PROFESSIONAL ENGINEER FROM THE STATE OF MARYLAND FOR REVIEW.

12.MASONRY WALLS SHALL BE 8" MASONRY (fm = 2500 PSI) REINFORCED PER MASONRY WALL SCHEDULE ON S1.00. 13.REFER TO ARCHITECTURAL AND MECHANICAL DRAWINGS FOR LOCATIONS AND REQUIREMENTS AT LOUVERED

OPENINGS BELOW EXTERIOR WINDOWS. FOR FRAMING MODIFICATIONS AT LOUVERED OPENINGS, SEE DETAIL 14.STRUCTURAL STEEL WIDE FLANGE BEAMS SHALL CONFORM TO ASTM A-992, GRADE 50. HOLLOW STRUCTURAL STEEL TUBE SHALL CONFORM TO ASTM A500, GRADE B (Fy=46 KSI). STRUCTURAL STEEL PLATES, ANGLES AND

CHANNELS SHALL CONFORM TO ASTM A36. 15.ALL EXPOSED STRUCTURAL STEEL SHALL BE HOT-DIPPED GALVANIZED.

9

16.STAIRS SHALL BE DESIGNED FOR 100 POUNDS PER SQUARE FOOT LIVE LOAD. SUBMIT SIGNED AND SEALED SHOP DRAWINGS TO ENGINEER FOR REVIEW. STAIRS TO BE METAL PAN. SEE ARCHITECTURAL DRAWINGS FOR RISERS AND TREAD DIMENSIONS. ALL STAIR CHANNELS BEARING ON MASONRY WALLS SHALL REQUIRE 6"x 6"x 1/4" BEARING PLATES AND 1/2"Ø x 8" LONG ANCHOR BOLT WITH 2" HOOK.

17.PROVIDE DOUBLE 8" WIDE x 8" DEEP CONT. BOND BEAM AROUND PERIMETER OF ELEVATOR AND STAIR WITH 2#5 CONT. BOTTOM REINFORCING EACH COURSE AND FILLED SOLID WITH 3000 PSI GROUT AT EACH FLOOR AND ROOF ELEVATION. PROVIDE 90 DEGREE HOOK BARS AT CORNERS.

© COPYRIGHT AYERS SAINT GROSS, 2017

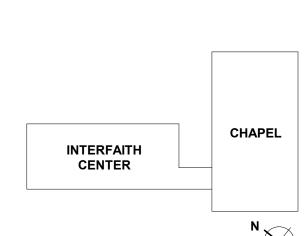
11

10

DRAWING NUMBER

LEVEL 2 FRAMING PLAN


DRAWING NAME


50% CD SET

PROJECT DESIGN PHASE

DRAWING INFORMATION	
ISSUE DATE:	04/28/17
SCALE:	1/8" = 1'-0"
JOB NO.:	16072
DRAWN BY:	CRS
PROJECT DESIGN PHASE	

NOT FOR CONSTRUCTION

REVISIONS		
REV. #	DESCRIPTION	DATE
	KEY PLAN	

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246 www.koffel.com

www.spexsys.com COMMISSIONING

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS

WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

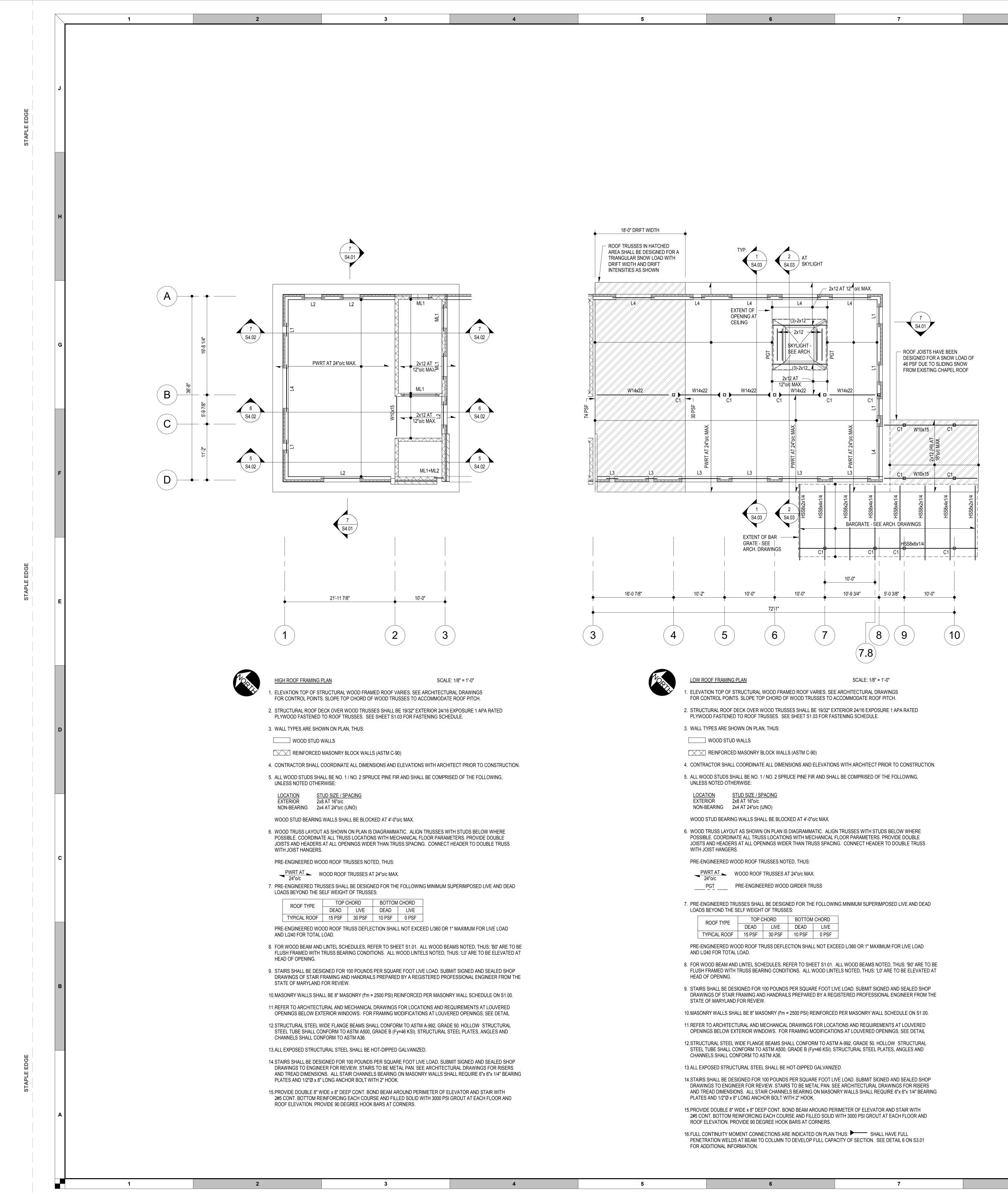
MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

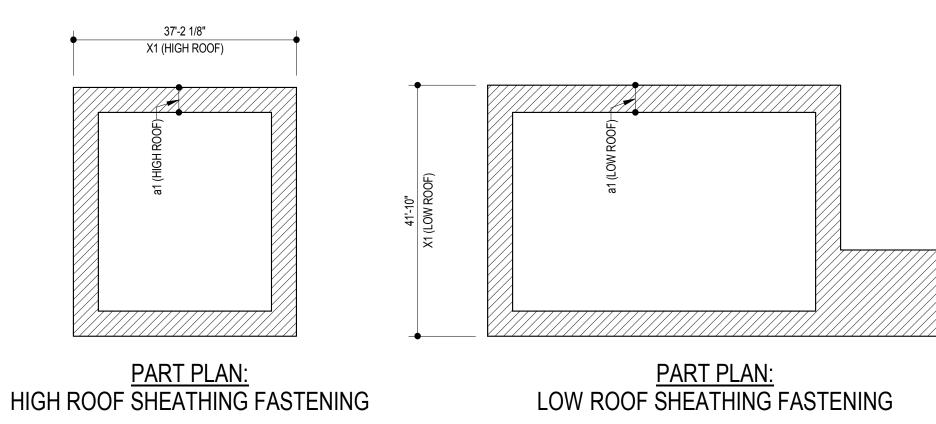
M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

410.467.2377


www.asg-architects.com


www.morabitoconsultants.com **CIVIL ENGINEER** 300 EAST JOPPA ROAD, SUITE 200

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500

GOUCHER —college—

ROOF SH	EATHING	
FASTENING	SCHEDUL	.E
PANEL LOCATION	ZONE 1	ZONE 2
PANEL END AND EDGE SUPPORTS	6"	3"

Wood Fastening Schedule NOT TO SCALE

PANEL INTERMEDIATE SUPPORTS

8

9

10

11

ROOF SHEATHING FASTENING NOTES:

10

- 1. SHEATHING FASTENERS SHALL BE 8d RING SHANK NAILS.
- 2. DIMENSION "a1" SHALL BE 10% OF DIMENSION "X1" OR 40% OF THE BUILDING HEIGHT (WHICH EVER IS SMALLER), BUT NOT LESS THAN 3 FEET.
- 3. BLOCK PANEL EDGES PERPENDICULAR TO END WALL FRAMING MEMBERS

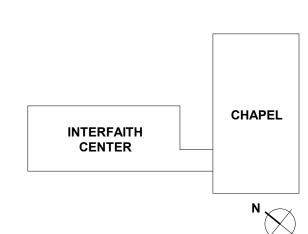
11

- WITHIN ZONE 2. BLOCKING SHALL HAVE A MAXIMUM SPACING OF 4'-0" o/c.
- 4. REFER TO ARCHITECTURAL DRAWINGS FOR BUILDING DIMENSIONS.

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

DRAWING NAME


50% CD SET

PROJECT DESIGN PHASE

DRAWING INFORMATION		
ISSUE DATE:	04/28/17	
SCALE:	As indicated	
JOB NO.:	16072	
DRAWN BY:	CRS	
PROJECT DESIGN PHA	SE	

NOT FOR CONSTRUCTION

REV. #	DESCRIPTION	DATE
	KEY PLAN	

REVISIONS

410.712.0390 www.spexsys.com COMMISSIONING KIBART TOWSON, MD 21204 410.494.1111 www.kibart.com

> CODE CONSULTANT KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

901 DULANEY VALLEY ROAD, SUITE 301

HANOVER, MD 21076

7257 PARKWAY DRIVE, SUITE 260

SPEXSYS

IT / AV / SECURITY

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

MORABITO CONSULTANTS SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com **CIVIL ENGINEER** WBCM

BALTIMORE, MD 21286 410.512.4500

www.wbcm.com

LANDSCAPE ARCHITECT

AYERS SAINT GROSS

952 RIDGEBROOK ROAD, SUITE 1700

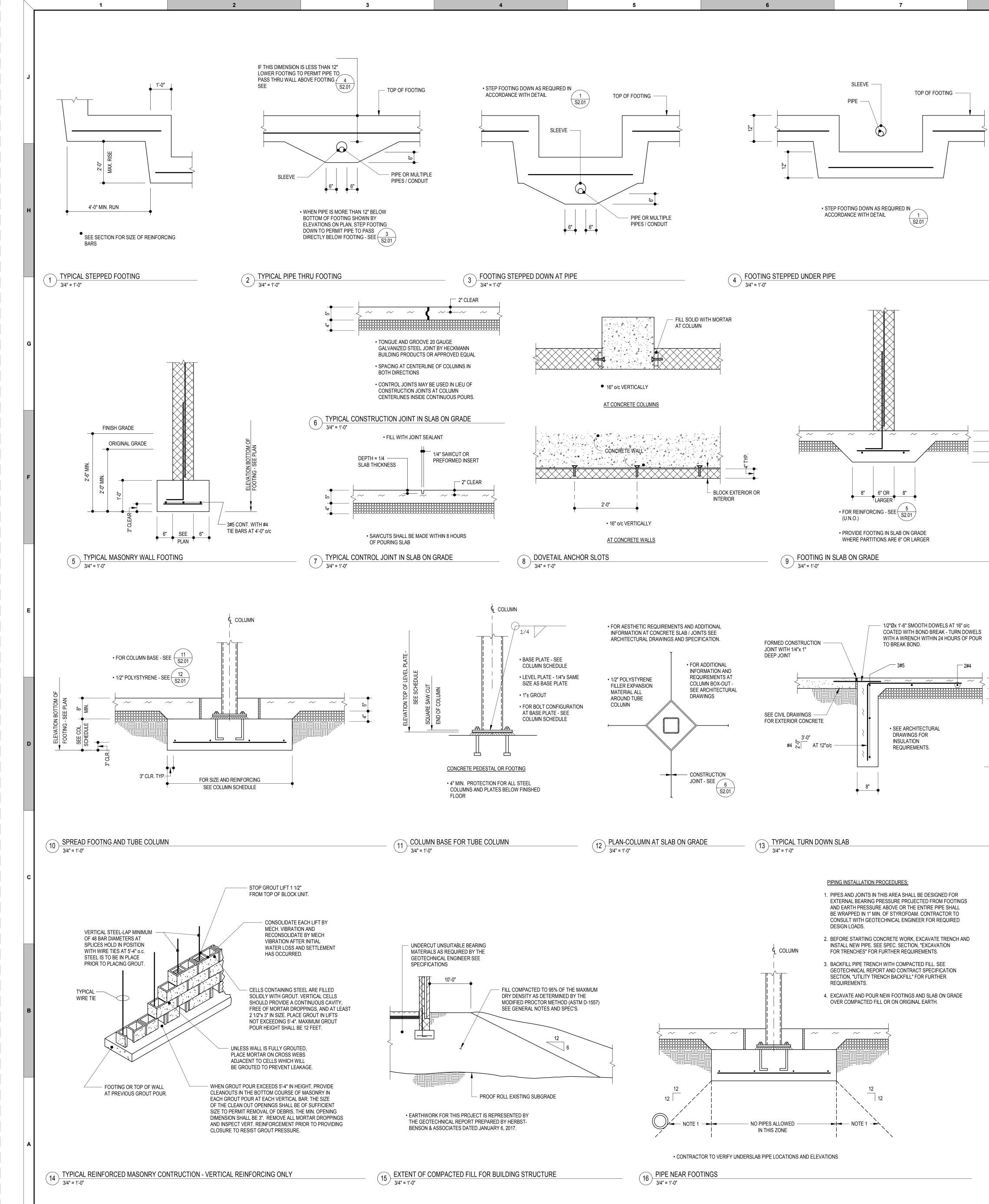
STRUCTURAL ENGINEER

300 EAST JOPPA ROAD, SUITE 200

1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER


MUELLER ASSOCIATES

PROJECT TEAM

PROJECT INFORMATION

GOUCHER

-college-

3

CONTRACTOR RESPONSIBILITIES: THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER THE BUILDING IS FULLY COMPLETED. IT IS SOLELY THE CONTRACTOR'S RESPONSIBILITY TO DETERMINE ERECTION PROCEDURES AND SEQUENCE, AND TO ENSURE THE STABILITY OF THE BUILDING AND ITS COMPONENT PARTS, AND THE ADEQUACY OF TEMPORARY OR INCOMPLETE CONNECTIONS, DURING ERECTING. THIS INCLUDES THE ADDITION OF ANY SHORING, SHEETING, TEMPORARY GUYS, BRACING OR TIEDOWNS THAT MIGHT BE NECESSARY SUCH MATERIAL IS NOT SHOWN ON THE DRAWINGS. IF APPLIED, THEY SHALL BE REMOVED AS CONDITIONS PERMIT AND SHALL REMAIN THE CONTRACTOR'S PROPERTY. THE ENGINEER HAS NO EXPERTISE IN, AND TAKES NO RESPONSIBILITY FOR, CONSTRUCTION MEANS AND METHODS OR JOBSITE SAFETY DURING CONSTRUCTION. PROCESSING AND/OR APPROVED SUBMITTALS MADE BY THE CONTRACTOR WHICH MAY CONTAIN INFORMATION RELATED TO CONSTRUCTION METHODS OF SAFETY ISSUES, OR PARTICIPATION IN MEETINGS WHERE SUCH ISSUES MIGHT BE DISCUSSED, SHALL NOT BE CONSTRUED AS VOLUNTARY ASSUMPTION BY THE ENGINEER OR ANY RESPONSIBILITY OF EACH CONTRACTOR TO FOLLOW ALL APPLICABLE SAFETY CODES AND REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE ENGINEER IS NOT ENGAGED IN, AND DOES NOT SUPERVISE CONSTRUCTION.

9

CONTROLLED FILL AND BACKFILL: SAMPLES OF ALL MATERIALS THAT THE CONTRACTOR PROPOSES TO USE FOR COMPACTED FILL SHALL BE APPROVED BY THE GEOTECHNICAL ENGINEER. COMPACTED FILL SHALL CONSIST OF LOCAL MATERIAL FREE OF DELETERIOUS MATTER AND CLASSIFIED CL, SC, GC, GM, OR SM PER ASTM D-2487. THE CONTROL OF THE MOISTURE FOR PLACING THE FILL WILL BE BASED ON THE RESULTS OF COMPACTION TESTS PER ASTM D-1557. ALL COMPACTED FILL SHALL HAVE A DENSITY OF AT LEAST 95% OF THE MODIFIED PROCTOR MAXIMUM DRY DENSITY AS DETERMINED BY ASTM D-1557. PRIOR TO PLACEMENT OF ANY FILLS, THE SITE SHALL BE STRIPPED OF ALL TOPSOIL, VEGETATION, ROCKS, AND ORGANIC MATERIALS AND THE EXPOSED SUBGRADE SHALL BE COMPACTED IN PLACE TO A CONFIRMED DENSITY OF 95% OF THE MODIFIED PROCTOR MAXIMUM DRY DENSITY. FILL MATERIAL SHALL BE PLACED IN LOOSE LIFTS NOT EXCEEDING 8" IN THICKNESS AND SHALL BE MIXED, SPREAD AND PLACED IN SUCH A WAY AS TO PRODUCE A UNIFORM THICKNESS OF MATERIAL AFTER PLACING. EACH LAYER OF FILL SHALL BE COMPACTED WITH A MINIMUM OF 6 COMPLETE PASSES ON ALL PORTIONS OF THE SURFACE OF EACH LIFT OF FILL BY RUBBER-TIRED ROLLERS, SHEEPS-FOOT ROLLERS OR OTHER MECHANICAL EQUIPMENT APPROVED BY THE GEOTECHNICAL ENGINEER. COMPACTED FILL PLACED WITHIN 4 FEET OF STRUCTURES AND PIPES SHOULD BE PLACED IN HORIZONTAL LIFTS NOT TO EXCEED 4 INCHES THICKNESS AND COMPACTED WITH HAND TAMPERS OR LIGHT COMPACTION EQUIPMENT TO THE SAME STANDARD. HEAVY COMPACTION EQUIPMENT SHOULD NOT BE ALLOWED WITHIN 4 FEET OF STRUCTURES UNLESS A MINIMUM 2 FEET DEPTH OF FILL COVERS THE STRUCTURES. WHENEVER IN PLACE DENSITIES ARE FOUND BELOW ACCEPTABLE LIMITS, ADDITIONAL ROLLING TO PRODUCE THE SPECIFIED DENSITIES SHALL BE REQUIRED. THE CONTRACTOR SHALL TAKE ALL MEASURES REQUIRED TO PROVIDE FOR FREE DRAINAGE OF THE SITE AND TO PREVENT PONDING OF WATER. SEDIMENT CONTROL MEASURES SHALL BE MAINTAINED AT ALL TIMES. PLACING OF FILL CONTAINING ORGANIC MATTER; PLACING OF FILL WITH MOISTURE CONTENT TOO HIGH OR TOO LOW FOR PROPER COMPACTION; PLACING OF FILL WHEN FREE WATER IS STANDING ON THE EXISTING FILL SURFACE: PLACING OF FILL IN A FROZEN CONDITION OR ON TOP OF FROZEN MATTER WILL NOT BE PERMITTED. THE SOILS ENGINEER SHALL SUPERVISE THE PLACING OF THE COMPACTED FILL AND ALL THE MATERIAL AND EQUIPMENT USED FOR THIS PURPOSE AND SHALL MAKE SUCH SOILS TESTS AS MAY BE REQUIRED FOR THE COMPLETION OF THE WORK PERFORMING AT LEAST 6 IN PLACE DENSITY TESTS DURING EACH EIGHT HOUR SHIFT.

<u>OUNDATIONS-SPREAD FOOTINGS</u>: BOTTOM OF ALL FOOTINGS SHALL BE A MINIMUM OF 2'-0" BELOW ORIGINAL GRADE OR PLACED IN APPROVED COMPACTED FILL. BOTTOM OF ALL EXTERIOR FOOTINGS SHALL BE A MINIMUM OF 2'-6" BELOW FINISHED GRADE. FOR SOIL BEARING CAPACITY THAT WAS USED IN THE FOUNDATION DESIGN SEE PLAN. SOIL BEARING VALUES MUST BE FIELD VERIFIED BY A REGISTERED GEOTECHNICAL ENGINEER. IF SOIL OF THIS BEARING CAPACITY IS NOT ENCOUNTERED AT THE ELEVATIONS INDICATED ON THE CONTRACT DRAWINGS, FOOTINGS SHALL BE LOWERED OR INCREASED IN SIZE AS DIRECTED BY THE STRUCTURAL ENGINEER. ELEVATIONS SHOWN ON PLAN ARE TO THE BOTTOM OF THE FOOTINGS.

CONCRETE: ALL CONCRETE WORK SHALL CONFORM TO ALL THE PROVISIONS OF THE SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS" (ACI 301-R85) AND TO THE "BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE" (ACI 318-89). ALL STRUCTURAL CONCRETE SHALL HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 3000 PSI UNLESS NOTED OTHERWISE. ADDITIONALLY, THE CONCRETE SHALL CONFORM TO ALL THE PROVISIONS OF "RECOMMENDED PRACTICE FOR HOT WEATHER CONCRETING" (ACI 305-R82) AND "RECOMMENDED PRACTICE FOR COLD WEATHER CONCRETING" (ACI 306-R83). ALL FORMWORK SHALL BE IN ACCORDANCE WITH THE AMERICAN CONCRETE INSTITUTE "FORMWORK FOR CONCRETE" SPECIAL PUBLICATION NO. 4 AND ACI'S "STANDARD RECOMMENDED PRACTICE FOR CONCRETE FORMWORK" (ACI-347-LATEST EDITION). ALL CONCRETE EXPOSED TO THE WEATHEF SHALL HAVE AN AIR ENTRAINMENT OF 5% +/- 1%. THE MAXIMUM WATER CEMENT RATIO W/C SHALL NOT EXCEED 0.53 FOR ALL CONCRETE EXCEPT CONCRETE EXPOSED TO WEATHER WHICH SHALL NOT EXCEED 0.45. NO ADMIXTURES CONTAINING CALCIUM CHLORIDE SHALL BE PERMITTED. THE MAXIMUM SLUMP OF ALL CONCRETE SHALL BE 4". FLOOR SLABS SHALL BE FINISHED TO A MINIMUM FLATNESS F-NUMBER Ff = 30 AND A MINIMUM LEVELNESS F-NUMBER F1 = 25 IN ANY DIRECTION. ALL CONCRETE SHALL BE CURED WITH LIQUID SEALING COMPOUND CONFORMING TO ASTM C-309, TYPE I AND FEDERAL SPECIFICATION TT-C-00800 OR OTHER APPROVED METHOD WHICH IS COMPATIBLE WITH FLOORING ADHESIVES AND OTHER SURFACE TREATMENTS. ALL CONCRETE LEFT EXPOSED AT THE COMPLETION OF THE PROJECT SHALL BI TREATED WITH A CLEAR, PENETRATING ACRYLIC BASE POLYMER CAPABLE OF PREVENTING INFILTRATION OF WATER BORNE CHLORIDES SUCH AS CONSPEC #1 BY CONSPEC MARKETING &

MANUFACTURING COMPANY OR APPROVED EQUAL. LOADS GREATER THAN THE DESIGN LIVE LOADS SHALL NOT BE PLACED ON THE STRUCTURE. A CONCRETE STRUCTURE MAY NOT SUPPORT ITS DESIGN LIVE LOAD FOR 28 DAYS. CONTRACTOR SHALL SUPPORT ADJACENT STRUCTURES, UTILITIES, AND EXCAVATIONS AS REQUIRED FOR COMPLETION OF WORK. ONE SET OF COMPRESSIVE TEST CYLINDERS FOR EACH 100 CUBIC YARDS POURED, BUT NOT LESS THAN ONE SET FOR EACH DAY'S POUR AND EACH CLASS OF CONCRETE, ALONG WITH SLUMP TESTS SHALL BE PERFORMED BY A TESTING LABORATORY APPROVED BY THE STRUCTURAL ENGINEER CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR ALL TEMPORARY FORMWORK INCLUDING STRIPPING PROCEDURES FOR CONCRETE FLAT SLABS, SHEETING, SHORING, UNDERPINNING, ETC. SEALED BY A REGISTERED PROFESSIONAL ENGINEER AS PART OF THE CONTRACTOR'S

CONCRETE SLAB ON GRADE CONSTRUCTION: THE CONCRETE SLABS ON GRADE FOR THIS PROJECT HAVE BEEN DESIGNED UTILIZING A MODULUS OF SUBGRADE REACTION "K" EQUAL TO 250 PCI FOR ALL WAREHOUSES, LOADING DOCKS, AND OTHER STORAGE AREAS, AND A MODULUS OF SUBGRADE REACTION "K" EQUAL TO 100 PCI FOR ALL OTHER AREAS OF THE CONCRETE SLABS ON GRADE. PLEASE NOTE THAT THE CONCRETE SLABS ON GRADE THROUGHOUT THIS PROJECT ARE NOT DESIGNED TO SUPPORT THE CRANES USED DURING THE ERECTION OF THE STRUCTURAL STEEL OR CONCRETE TILT-UP WALL BEARING PANELS. IF THE CONTRACTOR ELECTS TO PLACE THE CRANE ON THE CONCRETE SLAB ON GRADE, IT IS THE CONTRACTOR'S RESPONSIBILITY TO TAKE ALL NECESSARY PRECAUTIONS, INCLUDING THE TEMPORARY INSTALLATION OF WOOD CRIBBING ON THE SLAB, IN ORDER TO PREVENT CRACKS FROM FORMING IN THE SLABS ON GRADE. ALL CRACKS WHICH FORM IN THE CONCRETE SLABS ON GRADE DUE TO THE CRANE BEING PLACED ON THE SLAB WILL BE REPLACED OR REPAIRED TO THE APPROVAL OF THE STRUCTURAL ENGINEER AND OWNER AT THE CONTRACTOR'S EXPENSE

INFORCING STEEL: REINFORCING STEEL SHALL BE DEFORMED BARS IN ACCORDANCE WITH

ASTM A-615, GRADE 60. BENDS ARE TO BE FABRICATED AS PER DETAILS. PLACE MAIN REINFORCING STEEL SO AS TO PROVIDE 3" MINIMUM COVER FOR FOUNDATIONS POURED ON EARTH, 2" MINIMUM COVER FOR BEAMS AND COLUMNS, 3/4" MINIMUM COVER FOR SLABS AND 1 1/2" FOR ALL REBAR IN EXPOSED CONCRETE (EXCEPT AS OTHERWISE DETAILED). ALL BEAM AND SLAB STEEL SHALL HAVE A MINIMUM EXTENSION INTO THE SUPPORTS IN ACCORDANCE WITH THE LATEST ADDITION OF THE ACI CODE, PROVIDE ACCESSORIES AND BAR SUPPORTS IN ACCORDANCE WITH THE MANUAL OF STANDARD PRACTICE FOR DETAILING REINFORCED CONCRETE STRUCTURES (ACI 315-80). TOP REINFORCING IN PARKING DECKS AND ALL OTHER REINFORCING SHOWN ON THE CONTRACT DOCUMENTS SHALL BE EPOXY-COATED CONFORMING TO ASTM A-775 FOR BARS AND ASTM A-884 FOR WELDED WIRE FABRIC. WHERE REQUIRED. DAMAGED AND CUT EPOXY-COATING SHALL BE REPAIRED WITH PATCHING MATERIAL CONFORMING TO ASTM A-775. EPOXY-COATED REINFORCING BARS SHALL REST ON COATED WIRE BAR SUPPORTS MADE OF DILLECTIC MATERIAL FOR A MINIMUM DISTANCE OF 2 INCHES FROM POINT OF CONTACT WITH EPOXY-COATED REBARS. EPOXY-COATED REINFORCING BARS SHALL BE FASTENED WITH NYLON-, EPOXY-, OR PLASTIC-COATED TIE WIRE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A-185, GRADE 60. UNLESS OTHERWISE NOTED, WWF REINFORCING SHALL BE PLACED AT MID-DEPTH OF SLABS ON GRADE AND DRAPED OVER SUPPORTS IN CONCRETE SLABS ON CENTERING. END LAPS OF ALL WWF REINFORCING SHALL BE LAPPED 8" MINIMUM. CONCRETE ENGINEERED REINFORCING FIBERS SHALL BE POLYPROPYLENE COLLATED, FIBRILLATED FIBERS FROM FIBERMESH, INC. INSTALLED IN STRICT ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.

TRUCTURAL STEEL: STRUCTURAL STEEL PLATES, ANGLES, CHANNELS, BARS, AND ROLLED S, M AND HP SHAPES SHALL CONFORM TO ASTM A-36. ROLLED WIDE FLANGE SHAPES SHALL CONFORM TO ASTM A-992, GRADE 50; ASTM A-572, GRADE 50; ASTM AH-36, GRADE 50; OR ASTM A-588, GRADE 50. STRUCTURAL STEEL TUBULAR SHAPES SHALL CONFORM TO ASTM A-500, GRADE B (FY=46KSI) AND STRUCTURAL STEEL PIPES SHAPES SHALL CONFORM TO ASTM A-53, TYPES E OR G, GRADE B (FY=35KSI). ANCHOR BOLTS SHALL CONFORM TO ASTM F1554, GRADE 36. ALL CONNECTIONS WITH SLOTTED AND OVERSIZE HOLES SHALL HAVE SLIP CRITICAL CONNECTIONS ALL OTHER CONNECTIONS MAY BE BEARING TYPE CONNECTIONS. ALL BOLTS SHALL CONFORM TO ASTM A-325. WELDS SHALL CONFORM TO ALL THE PROVISIONS OF THE STRUCTURAL WELDING CODE, AWS D1.1-2002 OF THE AMERICAN WELDING SOCIETY EXCEPT SECTIONS 2.3, 2.4, 2.5, 8.13.1.2 AND 9. HEADED STUD TYPE SHEAR CONNECTORS SHALL BE COLD FINISHED CARBON STEEL COMPLYING WITH ASTM A-108. GRADE 1015 OR 1020, WITH DIMENSIONS COMPLYING WITH AISC SPECIFICATIONS. NO OPENINGS IN BEAMS OTHER THAN SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE PERMITTED WITHOUT WRITTEN APPROVAL FROM THE STRUCTURAL ENGINEER. PROVIDE 2 MILS OF ONE OF THE FOLLOWING SHOP PAINTS: NO. 769 GREY PRIMER MANUFACTURED BY RUST-OLEUM CORPORATION; NO. 769 GREY PRIMER MANUFACTURED BY TNEMEC COMPANY AND WETSALL PRIMER MANUFACTURED BY FARBOIL COMPANY. PROVIDE SHOP AND FIELD INSPECTION OF ALL STRUCTURAL STEEL BY A TESTING LABORATORY APPROVED BY THE STRUCTURAL ENGINEER.

ONRY: SOLID MASONRY SHALL BE GRADE N1 IN ACCORDANCE WITH ASTM C-90 AND MAY BE 75% SOLID UNLESS OTHERWISE NOTED. HOLLOW MASONRY UNITS SHALL BE GRADE N1 CONFORMING TO ASTM C-90. MASONRY UNITS SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 1900 PSI BASED ON THE NET CROSS SECTIONAL AREA OF THE INDIVIDUAL BLOCK UNITS. ALL MORTAR SHALL BE TYPE "S" CONFORMING TO ASTM C-270 WITH MINIMUM COMPRESSIVE STRENGTH OF 1800 PSI AT 28 DAYS. PROVIDE A MINIMUM OF 3 COURSES OF SOLID BRICK OR ONE COURSE OF 100% SOLID BLOCK UNDER WALL BEARING ENDS OF ALL JOISTS AND SLABS, THE FULL WIDTH OF THE WALL, UNLESS NOTED. IN BEARING WALLS, PROVIDE SOLID BRICK OR 100% BLOCK EXTENDING 8" BEYOND WALL OPENINGS THE FULL WALL THICKNESS DOWN TO THE FLOOR, UNLESS NOTED. ALL PORTIONS OF MASONRY WALLS HAVING A HORIZONTAL CROSS SECTION OF 4 SQ. FT. OR LESS SHALL BE OF SOLID MASONRY DOWN TO FOOTINGS. PROVIDE HORIZONTAL MASONRY REINFORCING (DUR-O-WAL OR EQUAL) AT 16" 0/C. IN ALL MASONRY WALLS UNLESS NOTED. ALL MASONRY WALLS SHALL HAVE CONTROL JOINTS AT 40'-0" o/c. MAXIMUM. SEE ARCHITECTURAL DRAWINGS FOR LOCATIONS. ALL MORTAR JOINTS IN MASONRY WALLS (HORIZONTAL AND VERTICAL) SHALL BE FILLED 100% WITH MORTAR. USE BUCKETS TO MEASURE MATERIALS FOR MIXING MORTAR.

LINTELS: ALL OPENINGS IN NEW WALLS AND PARTITIONS ARE TO BE PROVIDED WITH LINTELS. LINTELS SHALL BE STONE, CONCRETE, SLAG CONCRETE, OR STRUCTURAL STEEL. PROVIDE 4" MINIMUM END BEARING FOR LINTELS IN NON-BEARING PARTITIONS AND 8" MINIMUM END BEARING FOR LINTELS IN ALL EXTERIOR WALLS AND BEARING PARTITIONS. FOR ANY OPENING NOT SPECIFICALLY SHOWN, PROVIDE ONE 4" x 3 1/2" x 5/16" (LLV) ANGLE FOR EACH 4" OF WALL THICKNESS FOR SPANS NOT EXCEEDING 6'-0"; ONE 6" x 3 1/2" x 5/16" (LLV) ANGLE FOR EACH 4" OF WALL THICKNESS FOR SPANS EXCEEDING 6'-0" BUT LESS THAN 8'-0" OR PRECAST CONCRETE LINTELS AS DIRECTED BY THE ARCHITECT. PRECAST CONCRETE LINTELS SHALL HAVE ONE #4 TOP AND BOTTOM FOR EACH 4" OF WALL THICKNESS FOR SPANS NOT EXCEEDING 6'-0": ONE #5 TOP AND BOTTOM FOR EACH 4" OF WALL THICKNESS FOR SPANS EXCEEDING 6'-0" BUT LESS THAN 8'-0". ALL PRECAST CONCRETE LINTELS SHALL ALSO BE REINFORCED WITH #2 WIRE TIES AT 8"o/c. SEE ARCHITECTURAL, MECHANICAL, ELECTRICAL AND STRUCTURAL DRAWINGS FOR LOCATIONS OF LINTELS. CONSULT STRUCTURAL ENGINEER FOR LINTEL REQUIREMENTS FOR ALL NEW OPENINGS IN EXISTING WALLS.

POST-INSTALLED ANCHORS: POST-INSTALLED ANCHORS SHALL ONLY BE USED WHERE SPECIFIED ON HE CONSTRUCTION DOCUMENTS. SUBSTITUTION REQUESTS FOR ALTERNATE PRODUCTS MUST BE APPROVED IN WRITING BY THE STRUCTURAL ENGINEER OF RECORD PRIOR TO USE. CONTRACTOR SHALL PROVIDE CALCULATIONS DEMONSTRATING THAT THE SUBSTITUTED PRODUCT IS CAPABLE OF ACHIEVING THE PERFORMANCE VALUES OF THE SPECIFIED PRODUCT. SUBSTITUTIONS WILL BE EVALUATED BY THEIR HAVING AN ICC ESR SHOWING COMPLIANCE WITH THE RELEVANT BUILDING CODE FOR SEISMIC USES, LOAD RESISTANCE, INSTALLATION CATEGORY, AND AVAILABILITY OF COMPREHENSIVE INSTALLATION INSTRUCTIONS. ADHESIVE ANCHOR EVALUATION WILL ALSO CONSIDER CREEP, FATIGUE, IN-SERVICE TEMPERATURE AND INSTALLATION TEMPERATURE. ANCHOR CAPACITY IS HIGHLY DEPENDANT UPON SPACING BETWEEN ADJACENT ANCHORS AND PROXIMITY OF ANCHORS TO EDGE OF CONCRETE/MASONRY. INSTALL ANCHORS IN ACCORDANCE WITH SPACING AND EDGE CLEARANCES INDICATED ON THE DRAWINGS. IF EDGE DISTANCES OR ANCHOR SPACING IS NOT SPECIFIED ON THE DRAWINGS, PROVIDE THE FOLLOWING MINIMUM DISTANCES. A) EDGE DISTANCES a. ADHESIVE ANCHORS: 2 TIMES THE ANCHOR EMBEDMENT LENGTH b. UNDERCUT ANCHORS: 2.5 TIMES THE ANCHOR EMBEDMENT LENGTH c. EXPANSION ANCHORS (SLEEVE OR WEDGE): 4 TIMES THE ANCHOR EMBEDMENT

10

GENERAL NOTES

11

B) ANCHOR SPACINGS a. ALL ANCHORS: 3 TIMES THE ANCHOR EMBEDMENT ANCHORS SHALL BE INSTALLED BY QUALIFIED PERSONNEL IN ACCORDANCE WITH THE CONSTRUCTION DOCUMENTS, BUILDING CODE, AND MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII). THE STRUCTURAL ENGINEER OF RECORD MUST RECEIVE DOCUMENTED

CONFIRMATION THAT ALL OF THE CONTRACTOR'S PERSONNEL WHO INSTALL POST-INSTALLED ANCHORS HAVE BEEN PROPERLY TRAINED PRIOR TO THE COMMENCEMENT OF INSTALLING FOR EACH SPECIFIC PRODUCT. INSTALLATION OF ADHESIVE ANCHORS HORIZONTALLY OR UPWARDLY INCLINED TO SUPPORT SUSTAINED TENSION LOADS (AS DETERMINED BY THE ENGINEER) SHALL BE PERFORMED BY PERSONNEL CERTIFIED BY THE ACI-CRSI "ADHESIVE ANCHOR INSTALLER CERTIFICATION PROGRAM". A) ADHESIVE ANCHORS INSTALLED IN HORIZONTAL OR UPWARDLY INCLINED ORIENTATIONS TO RESIST SUSTAINED TENSION LOADS SHALL BE CONTINUOUSLY INSPECTED DURING INSTALLATION BY AN INSPECTOR SPECIALLY APPROVED FOR THAT PURPOSE BY THE BUILDING OFFCIAL. THE

SPECIAL INSPECTOR SHALL FURNISH A REPORT TO THE STRUCTURAL ENGINEER OF RECORD AND BUILDING OFFICIAL THAT THE WORK COVERED BY THE REPORT HAS BEEN PROPERLY PERFORMED AND THAT THE MATERIALS USED AND THE INSTALLATION PROCEDURES USED CONFORM WITH THE APPROVED CONSTRUCTION DOCUMENTS AND THE MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII). ADHESIVE ANCHORS SHALL BE INSTALLED IN CONCRETE HAVING A MINIMUM AGE OF 21 DAYS AT

TIME OF ANCHOR INSTALLATION. IF HIGH-EARLY STRENGTH CONCRETE MIXES ARE SPECIFIED, CONTACT THE STRUCTURAL ENGINEER OF RECORD FOR APPROVAL OF MINIMUM INSTALLATION AGE. EXISTING REINFORCING BARS OR PRESTRESSING STEEL IN THE CONCRETE STRUCTURE MAY CONFLICT WITH SPECIFIC ANCHOR LOCATIONS. UNLESS NOTED ON THE DRAWINGS THAT THE BARS CAN BE CUT, THE CONTRACTOR SHALL REVIEW THE EXISTING STRUCTURAL DRAWINGS AND SHALL UNDERTAKE TESTING TO LOCATE THE POSITION AND DEPTH OF THE REINFORCING BARS OR PRESTRESSING AT THE LOCATIONS OF THE CONCRETE ANCHORS, BY HILTI FERROSCAN, GPR, X-RAY CHIPPING OR OTHER MEANS.

EXCEPT WHERE INDICATED ON THE DRAWINGS, POST-INSTALLED ANCHORS SHALL CONSIST OF THE FOLLOWING ANCHOR TYPES. ANCHORS EXPOSED TO WEATHER AND AT SILL PLATES SHALL BE STAINLESS STEEL.

- a) MECHANICAL ANCHORS IN CRACKED OR UNCRACKED CONCRETE USE: (1) HILTI KWIK BOLT-TZ EXPANSION ANCHORS
- (2) HILTI KWIK HUS-EZ AND KWIK HUS EZ-I SCREW ANCHORS b) ADHESIVE ANCHORS IN CRACKED AND UNCRACKED CONCRETE USE
- (1) HILTI HIT-HY 200 SAFE SET SYSTEM WITH HILTI HIT-Z ROD (2) HILTI HIT-HY 200 SAFE SET SYSTEM WITH HILTI HOLLOW DRILL BIT SYSTEM WITH HAS-E THREADED ROD
- c) REBAR DOWELING INTO CONCRETE: (1) HILTI HIT-HY 200 SAFE SET SYSTEM WITH HILTI HOLLOW DRILL BIT SYSTEM
- d) ADHESIVE ANCHORS IN HOLLOW / GROUTED / MULTI-WYTHE MASONRY USE: (1) HILTI HIT-HY 70 MASONRY ADHESIVE ANCHORING SYSTEM
- e) MECHANICAL ANCHORS IN GROUTED MASONRY USE: (1) HILTI KWIK HUS-EZ SCREW ANCHORS (2) HILTI KWIK BOLT-3 EXPANSION ANCHORS

STRUCTURAL LUMBER: STRUCTURAL WOOD STUDS AND JOISTS SHALL BE NO.1/NO. 2 SPRUCE-PINE-FIR WITH A MAXIMUM WATER CONTENT OF 19% AND THE FOLLOWING MINIMUM PROPERTIES

Fb = 875 PSI Fc = 425 PSI Ft = 425 PSI Fc = 1150 PSI Fv = 135 PSI E = 1,400,000 PSI STRUCTURAL FLOOR SHEATHING SHALL BE 23/32" TONGUE AND GROOVE EXPOSURE 1 APA GROUP 1 RATED STURD-I-FLOOR GLUED AND NAILED TO WOOD TRUSSES AS SPECIFIED ON PLAN. STRUCTURAL ROOF SHEATHING SHALL BE 19/32" EXTERIOR 24/16 EXPOSURE 1 APA RATED PLYWOOD FASTENED TO ROOF TRUSSES, WITH PLYWOOD SHEATHING CLIPS BETWEEN SUPPORTING MEMBERS WHERE EDGES OF THE PLYWOOD ABUT ONE ANOTHER. WHERE WOOD JOISTS FRAME INTO BEAMS, USE 16 GAUGE STANDARD JOIST HANGERS AND 10d NAILS, UNO, PROVIDE SOLID WOOD BLOCKING OR 16 GAUGE DIAGONAL X-BRIDGING BETWEEN ALL FLOOR JOISTS OR TRUSSES AT 8'-0" o/c AND BETWEEN ALL ROOF JOISTS OR TRUSSES AT 10'-0" o/c MAXIMUM. ALL ROOF TRUSSES WITH OVERHANGS, ALL ROOF RAFTERS IN CATHEDRAL CEILING AREAS, ALL FLOOR JOISTS/TRUSSES IN EXTERIOR BAI CONIES. EVERYWHERE FIRST FLOORS AND DECKS ARE FLEVATED ABOVE THE PERIMETER GRADE ELEVATIONS AND ALL OTHER HORIZONTAL SURFACES EXPOSED TO WIND UPLIFT SHALL BE SECURED TO THE BUILDING FRAMING WITH 18 GAUGE HURRICANE ANCHORS AND 10d NAILS. ALL LUMBER, BLOCKING, FURRING AND OTHER WOOD IN CONTACT WITH CONCRETE. MASONRY, THE GROUND OR EXPOSED TO THE WEATHER SHALL BE PRESSURE TREATED WITH WATER-BORNE PRESERVATIVES IN ACCORDANCE WITH THE AMERICAN WOOD PRESERVERS' INSTITUTE STANDARD AWPA-P5. LUMBER SHALL BE KILN-DRIED TO 15% MOISTURE CONTENT AFTER TREATMENT. COAT ALL CUT SURFACES OF TREATED LUMBER WITH AN APPROVED PRESERVATIVE. ALL CONNECTIONS OF BEAMS TO BEAMS, BEAMS TO COLUMNS, BRACING TO STRUCTURE AND

COLUMNS TO FOUNDATIONS SHALL BE ACCOMPLISHED USING STEEL CONNECTIONS OF TYPES SHOWN ON THESE DRAWINGS. ALL PLATES AND BARS USED IN THESE CONNECTIONS SHALL BE FABRICATED FROM STRUCTURAL STEEL CONFORMING TO ASTM A-36 WITH BOLTS CONFORMING TO ASTM A-307. ALL CONNECTIONS INCLUDING PLATES, DOWELS, BOLTS AND NAILS EXPOSED TO THE WEATHER SHALL BE GALVANIZED. ALL CONNECTIONS TO PRESSURE TREATED WOOD SHALL BE GALVANIZED PER ASTM A-653M, DESIGNATION G185 COATING. WOOD TRUSSES: STRUCTURAL ROOF TRUSSES SHALL BE DESIGNED PER THE STANDARD DESIGN

SPECIFICATION FOR METAL PLATE CONNECTED WOOD TRUSSES TPI-02 AS PREPARED PER THE TRUSS PLATE INSTITUTE, INC. THE WOOD TRUSSES SHALL BE CUSTOM DESIGNED TO FIT THE DIMENSIONS AND LOADS INDICATED ON THE PLANS. ALL DESIGNS SHALL BE IN ACCORDANCE WITH THE ALLOWABLE LOAD VALUES SHOWN ON THE PLANS. ALL PREFABRICATED TRUSSES SHALL HAVE ERECTION BRACING, STRUT BRACING, AND BRIDGING AS REQUIRED BY THE MANUFACTURER TO RESIST ALL CONSTRUCTION AND BUILDING LOADS. SHOP DRAWINGS INCLUDING DESIGN CALCULATIONS, MEMBER FORCES AND STRESS CONTROL POINTS SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER AND SUBMITTED TO THE STRUCTURAL ENGINEER FOR APPROVAL

HOP DRAWINGS: SHOP DRAWINGS FOR ALL STRUCTURAL ELEMENTS SHOWN ON THE CONTRACT DOCUMENTS MUST BE SUBMITTED BY GENERAL CONTRACTOR AND REVIEWED BY THE ENGINEER. ALL CONTRACTOR MODIFICATIONS (INCLUDING PRODUCTS SUBMISSION) MUST BE IDENTIFIED IN WRITING AS A PROPOSED "AS EQUAL" CHANGES AT TIME OF SUBMISSION. IF A CONTRACTOR OR OWNER FAILS TO SUBMIT THE SHOP DRAWINGS OR FAILS TO FOLLOW THE ABOVE "AS EQUAL" PROCEDURE, THE FIRM MORABITO CONSULTANTS, INC. WILL NOT BE RESPONSIBLE FOR THE STRUCTURAL CERTIFICATION AND DESIGN OF THE PROJECT. SHOP DRAWINGS ARE REVIEWED BY THE ENGINEER AS A CONVENIENCE TO THE CONTRACTOR AND ARE NOT A CONTRACT DOCUMENT.

INSPECTION: ALL WORK SPECIFIED HEREIN SHALL BE INSPECTED IN ACCORDANCE WITH THE BUILDING CODE AND ALL LOCAL ORDINANCES. THE OWNER OR CONTRACTOR SHALL HIRE AN EXPERIENCED QUALIFIED INSPECTOR TO PERFORM ALL REQUIRED INSPECTION WORK. INSPECTION SHALL CONSIST OF VISUAL OBSERVATIONS OF MATERIALS, EQUIPMENT OR CONSTRUCTION WORK FOR THE PURPOSE OF ASCERTAINING THAT THE WORK IS IN SUBSTANTIAL CONFORMANCE WITH THE CONTRACT DOCUMENTS AND WITH THE DESIGN INTENT. THE ENGINEER WILL NOT PERFORM THE REQUIRED INSPECTION AS PART OF THIS PRESENT CONTRACT WITH THE ARCHITECT/OWNER. UNDER THIS PRESENT CONTRACT, THE ENGINEER MAY VISIT THE SITE TO ASCERTAIN GENERAL CONFORMANCE TO THE CONTRACT DOCUMENTS. HOWEVER, SUCH VISITS SHALL NOT BE RELIED UPON BY OTHERS AS ACCEPTANCE OF THE WORK, NOR SHOULD IT BE CONSTRUED TO RELIEVE THE CONTRACTOR IN ANY WAY FROM HIS OBLIGATIONS AND RESPONSIBILITIES UNDER THE CONSTRUCTION CONTRACT. HOWEVER, IF DESIRED, MORABITO CONSULTANTS, INC. MAY BE HIRED UNDER A SEPARATE CONTRACT TO PERFORM THIS INSPECTION WORK.

PROFESSIONAL SERVICES DO NOT EXTEND TO OR INCLUDE THE REVIEW OR SITE OBSERVATION OF THE CONTRACTOR'S WORK OR PERFORMANCE, THEN THE OWNER WILL DEFEND, INDEMNIFY AND HOLD HARMLESS MORABITO CONSULTANTS, INC., FROM ANY CLAIM OR SUIT WHATSOEVER, INCLUDING BUT NOT LIMITED TO ALL PAYMENTS, EXPENSES OR COSTS INVOLVED, ARISING FROM OR ALLEGED TO HAVE ARISEN FROM THE CONTRACTOR'S PERFORMANCE OR THE FAILURE OF THE CONTRACTOR'S WORK TO CONFORM TO THE DESIGN INTENT AND THE CONTRACT DOCUMENTS. MORABITO CONSULTANTS, INC., AGREES TO BE RESPONSIBLE FOR ITS OWN OR ITS EMPLOYEES' NEGLIGENT ACTS, ERRORS OR OMISSIONS.

ESIGN WITHOUT CONSTRUCTION REVIEW: IT IS AGREED THAT IF MORABITO CONSULTANTS, INC.' S

VNERSHIP OF DOCUMENTS: THE CONTRACTOR ACKNOWLEDGES THESE PLANS AND SPECIFICATIONS PREPARED BY MORABITO CONSULTANTS, INC., AS INSTRUMENTS OF PROFESSIONAL SERVICE. NEVERTHELESS. THE PLANS AND SPECIFICATIONS PREPARED UNDER THIS AGREEMENT SHALL REMAIN THE PROPERTY OF MORABITO CONSULTANTS, INC. UPON COMPLETION OF THE WORK. THE CONTRACTOR AGREES TO HOLD HARMLESS AND INDEMNIFY MORABITO CONSULTANTS, INC., AGAINST ALL DAMAGES, CLAIMS, AND LOSSES, INCLUDING DEFENSE COSTS, ARISING OUT OF ANY REUSE OF THE PLANS AND SPECIFICATIONS WITHOUT THE WRITTEN AUTHORIZATION OF MORABITO CONSULTANTS, INC.

GROUND SNOW LOAD

c = 3000 PSI (FOOTINGS UNO) fc = 4500 PSI (RET, WALL FOOTINGS) 2. SNOW EXPOSURE FACTOR f'c = 3500 PSI (SLAB ON GRADE) 3. SNOW LOAD IMPORTANTANCE FACTOR I = 1.1 fy = 60000 PSI Fy = 50000 PSI

<u>LIVE LOADS</u>: COMMON ROOMS = 100 PSF OFFICES = 50 PSF CORRIDORS = 100 PSF ELEVATOR LOBBY = 100 PSF STAIRS = 100 PSF

ROOF = 30 PSF + SNOW DRIFT DEAD LOADS: PARTITIONS = 20 PSF

4. THERMAL FACTOR Ct = 1.05. FLAT-ROOF SNOW LOAD Pf = 22 PSF <u>EARTHQUAKE LOAD IBC-2015</u> SEISMIC USE GROUP = III, IE = 1.00 2. $Ss \le 0.136g, S1 \le 0.052g$ 3. SDS = 0.109, SD1 = 0.059

Pg = 20 PSF

Ce = 1.0

4. SITE CLASS = C 5. SEISMIC DESIGN CATEGORY A 6. DUAL SYSTEM WITH INTERMEDIATE MOMENT

FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES IN NORTH-SOUTH DIRECTION AND ORDINARY REINFORCED MASONRY SHEAR WALLS IN EAST-WEST DIRECTION 7. DESIGN BASE SHEAR = 11 K

8. Cs = 0.055 9. RESPONSE MODIFICATION FACTOR = 3.0 IN N-S = 2.0 IN E-W

10. EQUIVALENT LATERAL FORCE DESIGN METHOD

WIND LOAD ASCE 7-10 1. BASIC WIND SPEED = 115 MPH 2. BUILDING CATEGORY = II

3. IMPORTANCE FACTOR = 1.00 WIND EXPOSURE = B 5. INTERNAL PRESSURE COEFFICIENT = ±0.18

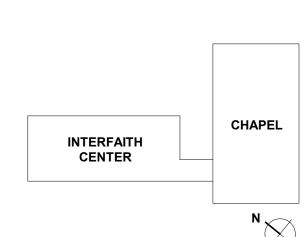
COMPONENTS AND CLADDING = ±30 PSF (EXTERIOR WALLS) ±35 PSF (WALL CORNERS)

11

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

FOUNDATION DETAILS AND **GENERAL NOTES**


DRAWING NAME

50% CD SET

DRAWING INFORMATION	
ISSUE DATE:	04/28/17
SCALE:	3/4" = 1'-0"
JOB NO.:	16072
DRAWN BY:	CRS
PROJECT DESIGN PHASE	

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
		
	KEY PLAN	

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 **TOWSON, MD 21204** 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246

www.koffel.com

COMMISSIONING

www.spexsys.com

www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

AYERS SAINT GROSS

1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

410.347.8500

MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

M/E/P & FIRE PROTECTION ENGINEER

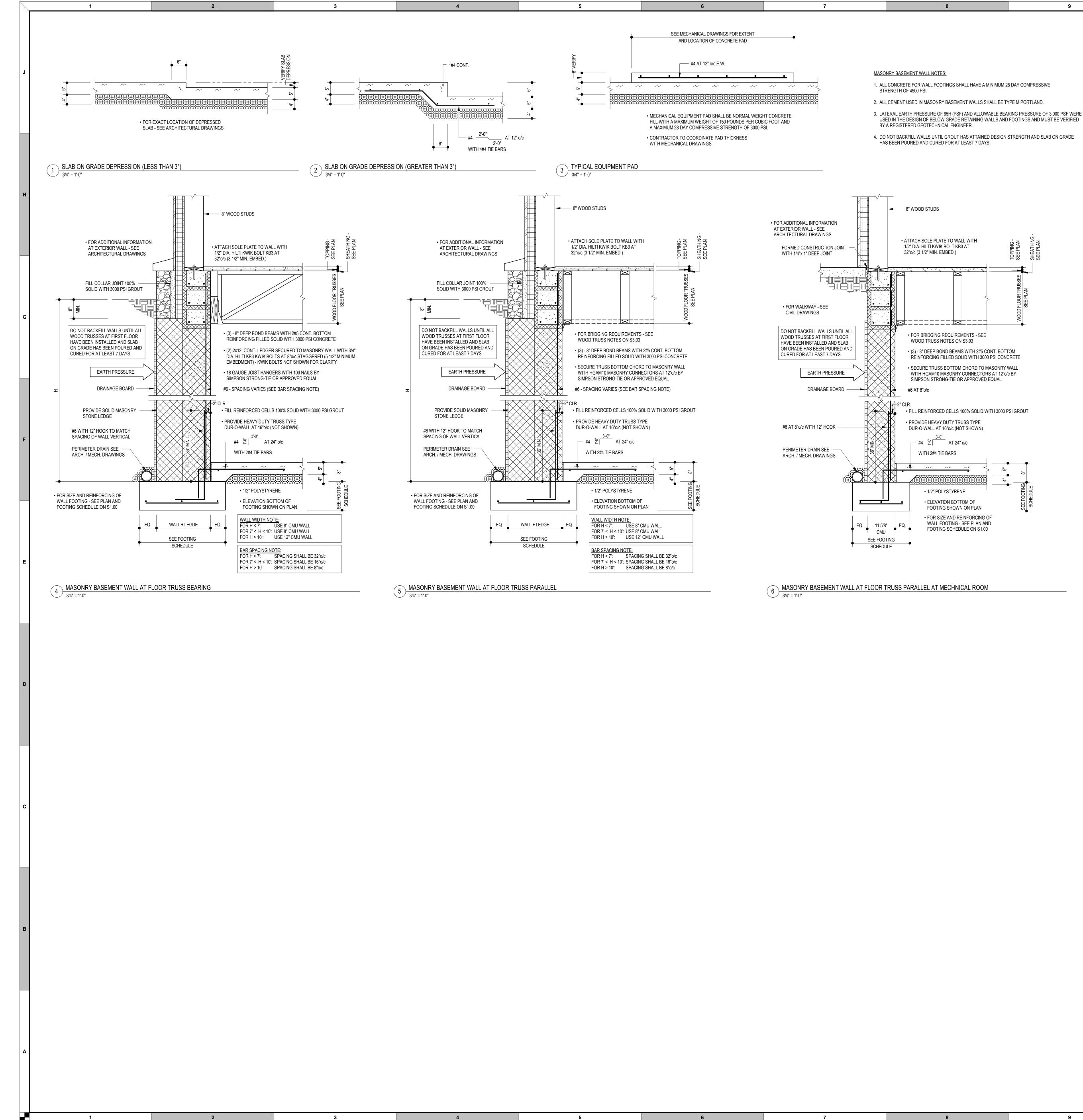
1306 CONCOURSE DRIVE, SUITE 100 STRUCTURAL ENGINEER

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

410.467.2377

www.morabitoconsultants.com


300 EAST JOPPA ROAD, SUITE 200

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

PROJECT TEAM

ARCHITECT

PROJECT INFORMATION GOUCHER

11

9

11

9

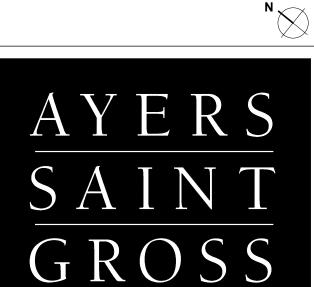
© COPYRIGHT AYERS SAINT GROSS, 2017

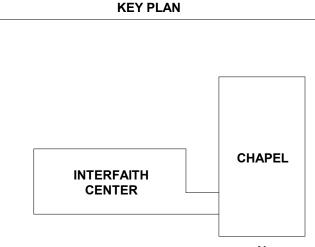
DRAWING NUMBER

FOUNDATION DETAILS

DRAWING NAME

50% CD SET


PROJECT DESIGN PHASE


DRAWING INFORMATION **ISSUE DATE:** 04/28/17 SCALE: 3/4" = 1'-0' JOB NO.: 16072 DRAWN BY: CRS

NOT FOR

ARCHITECTS + PLANNERS

REVISIONS				
REV. #	DESCRIPTION	DATE		
1	Revision 1	Date 1		
		<u> </u>		
	KEY PLAN			

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

COMMISSIONING

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

SPEXSYS

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY

www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS

SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com **CIVIL ENGINEER** WBCM

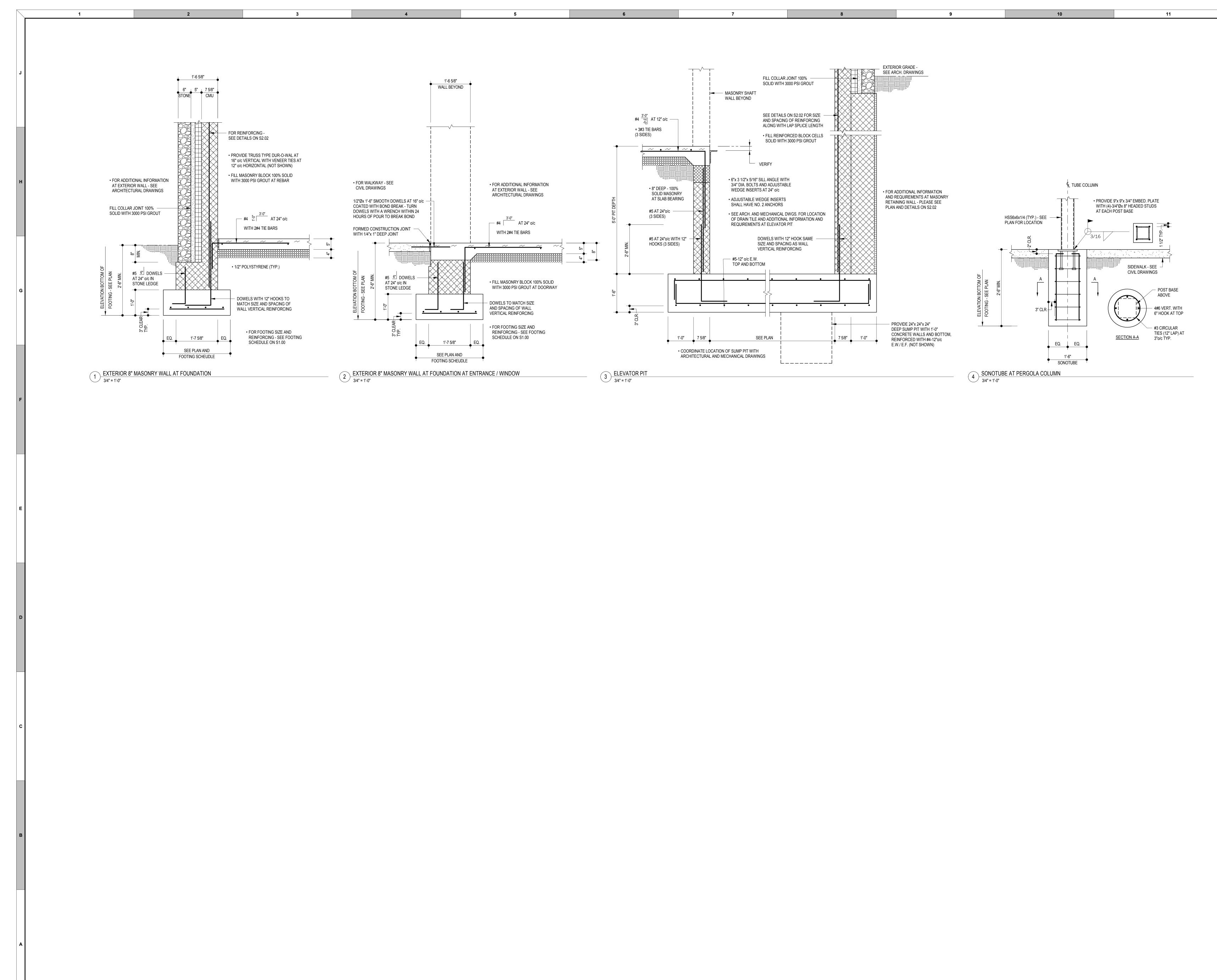
MORABITO CONSULTANTS

STRUCTURAL ENGINEER

www.muellerassoc.com

LINTHICUM, MD 21090 410.646.4500

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100


952 RIDGEBROOK ROAD, SUITE 1700

410.347.8500 www.asg-architects.com

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

GOUCHER —college—

3

5

7

6

9

© COPYRIGHT AYERS SAINT GROSS, 2017

11

10

DRAWING NUMBER

FOUNDATION DETAILS

DRAWING NAME

50% CD SET

PROJECT DESIGN PHASE

DRAWING INFORMATION	
ISSUE DATE:	04/28/17
SCALE:	3/4" = 1'-0"
JOB NO.:	16072
DRAWN BY:	CRS

NOT FOR CONSTRUCTION

INTERFAITH CENTER	CHAPEL
	N

	DECODIDITION	DATE
REV. #	DESCRIPTION	DATE
	Revision 1	Date 1
	KEY PLAN	

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KIBART

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246 www.koffel.com

COMMISSIONING

410.712.0390 www.spexsys.com

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

IT / AV / SECURITY SPEXSYS

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

AYERS SAINT GROSS

1040 HULL STREET, SUITE 100

MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

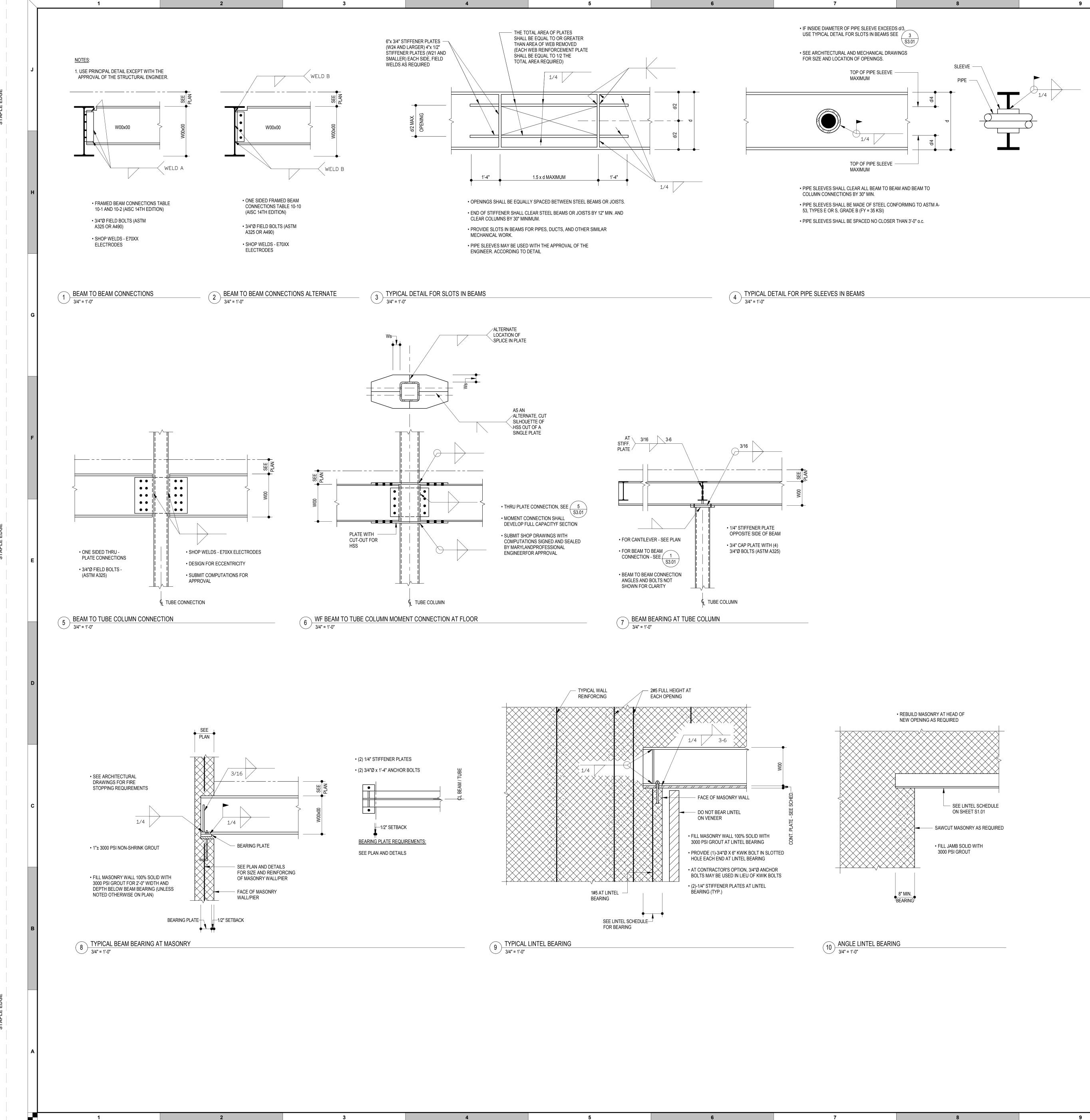
www.asg-architects.com

410.347.8500

M/E/P & FIRE PROTECTION ENGINEER

1306 CONCOURSE DRIVE, SUITE 100 STRUCTURAL ENGINEER

MORABITO CONSULTANTS


952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

410.467.2377 www.morabitoconsultants.com

300 EAST JOPPA ROAD, SUITE 200

GOUCHER —college—

10

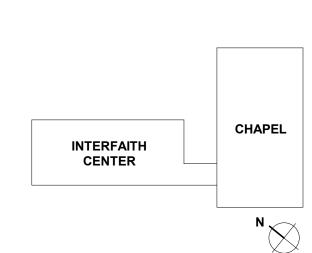
10

11

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

TYPICAL STEEL DETAILS


DRAWING NAME

50% CD SET

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: 3/4" = 1'-0" JOB NO.: 16072 DRAWN BY: CRS PROJECT DESIGN PHASE

NOT FOR CONSTRUCTION

REVISIONS				
REV. #	DESCRIPTION	DATE		
1	Revision 1	Date 1		
	KEY PLAN			

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045 410.750.2246

www.koffel.com

www.spexsys.com COMMISSIONING

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

www.asg-architects.com

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

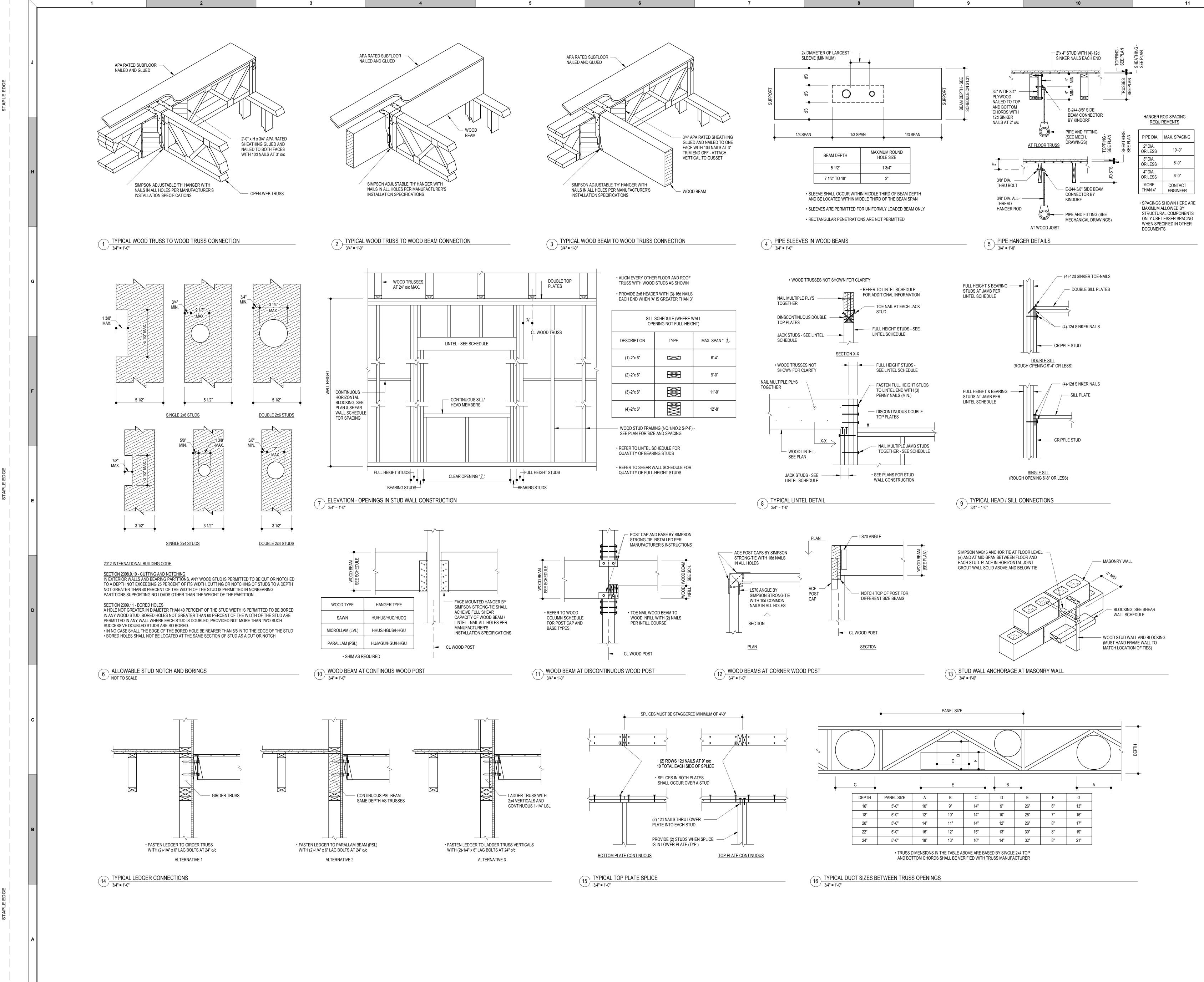
SPARKS, MD 21152

MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100

410.467.2377 www.morabitoconsultants.com

CIVIL ENGINEER


WBCM

M/E/P & FIRE PROTECTION ENGINEER

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

PROJECT TEAM ARCHITECT AYERS SAINT GROSS

GOUCHER

4

5

9

10

7

6

11

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

TYPICAL WOOD FRAMING DETAILS

DRAWING NAME

50% CD SET

PROJECT DESIGN PHASE

DRAWING INFORMATION			
ISSUE DATE:	04/28/17		
SCALE:	As indicated		
JOB NO.:	16072		
DRAWN BY:	CRS		

NOT FOR CONSTRUCTION

INTERFAITH CENTER	CHAPEL
	N S

REV. #	DESCRIPTION	DATE
<u>KEV.#</u>	DESCRIPTION	DATE
·		
	KEY PLAN	

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

COMMISSIONING KIBART

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

IT / AV / SECURITY SPEXSYS

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS

WBCM

CIVIL ENGINEER

SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

300 EAST JOPPA ROAD, SUITE 200

MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

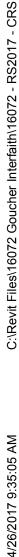
M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

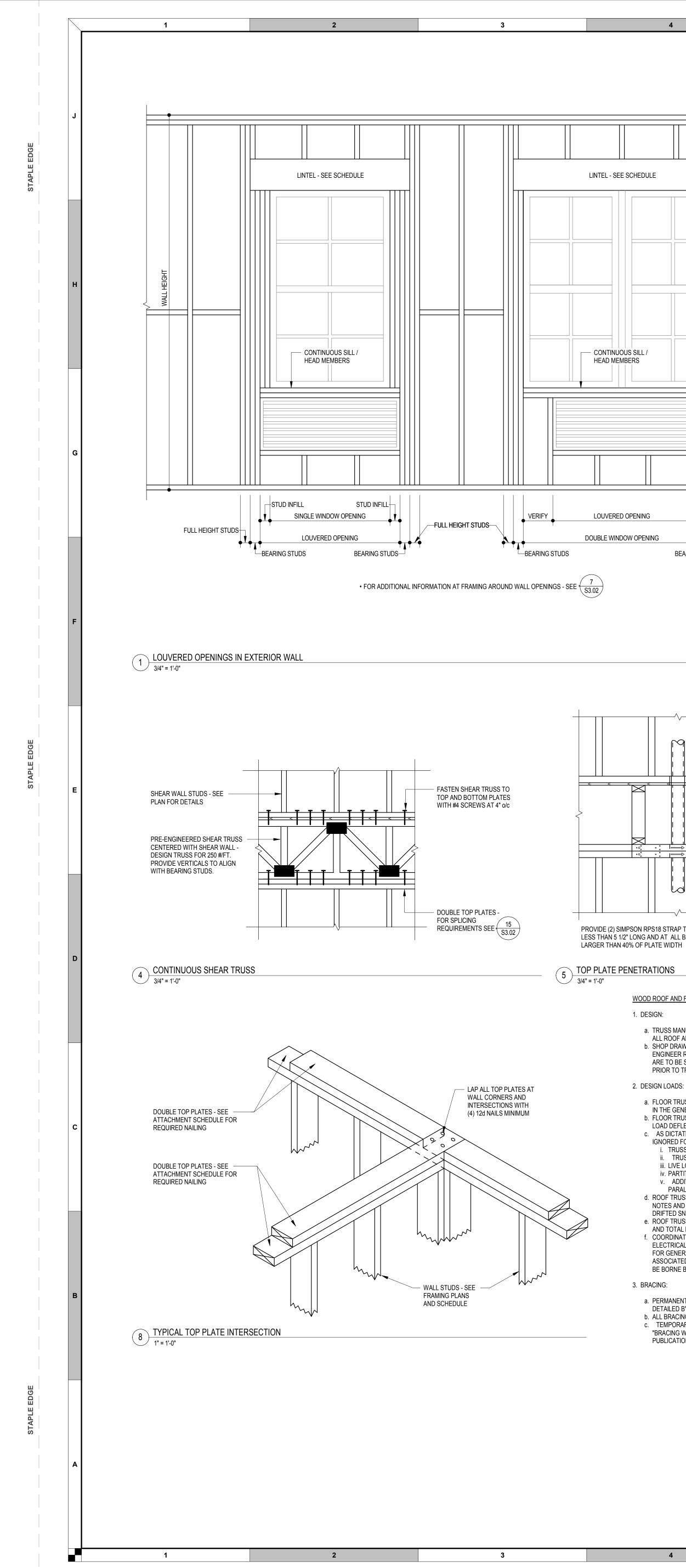
PROJECT TEAM

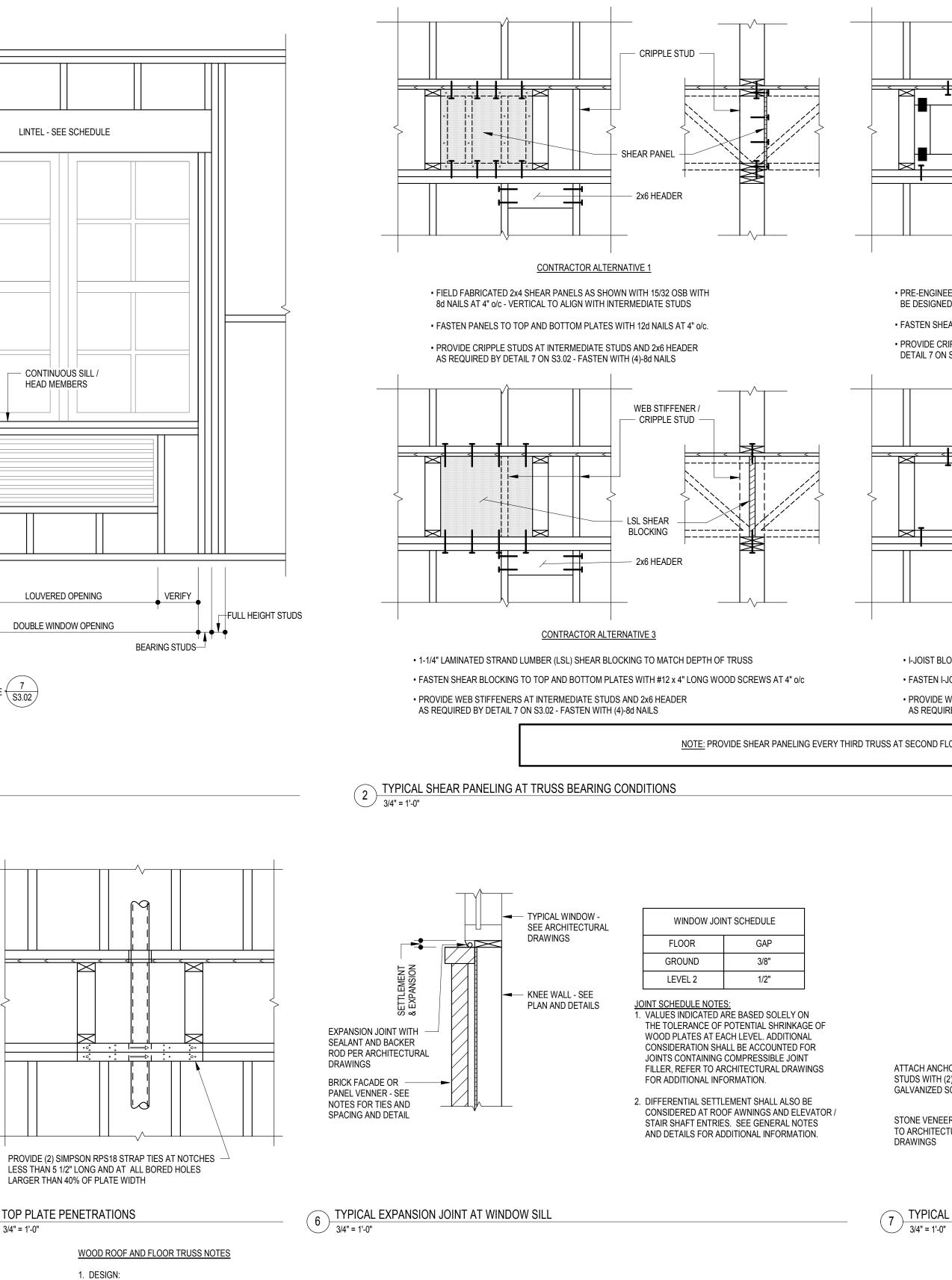
ARCHITECT

AYERS SAINT GROSS

1040 HULL STREET, SUITE 100


BALTIMORE, MD 21230


www.asg-architects.com


410.347.8500

PROJECT INFORMATION GOUCHER

-college-

7

8

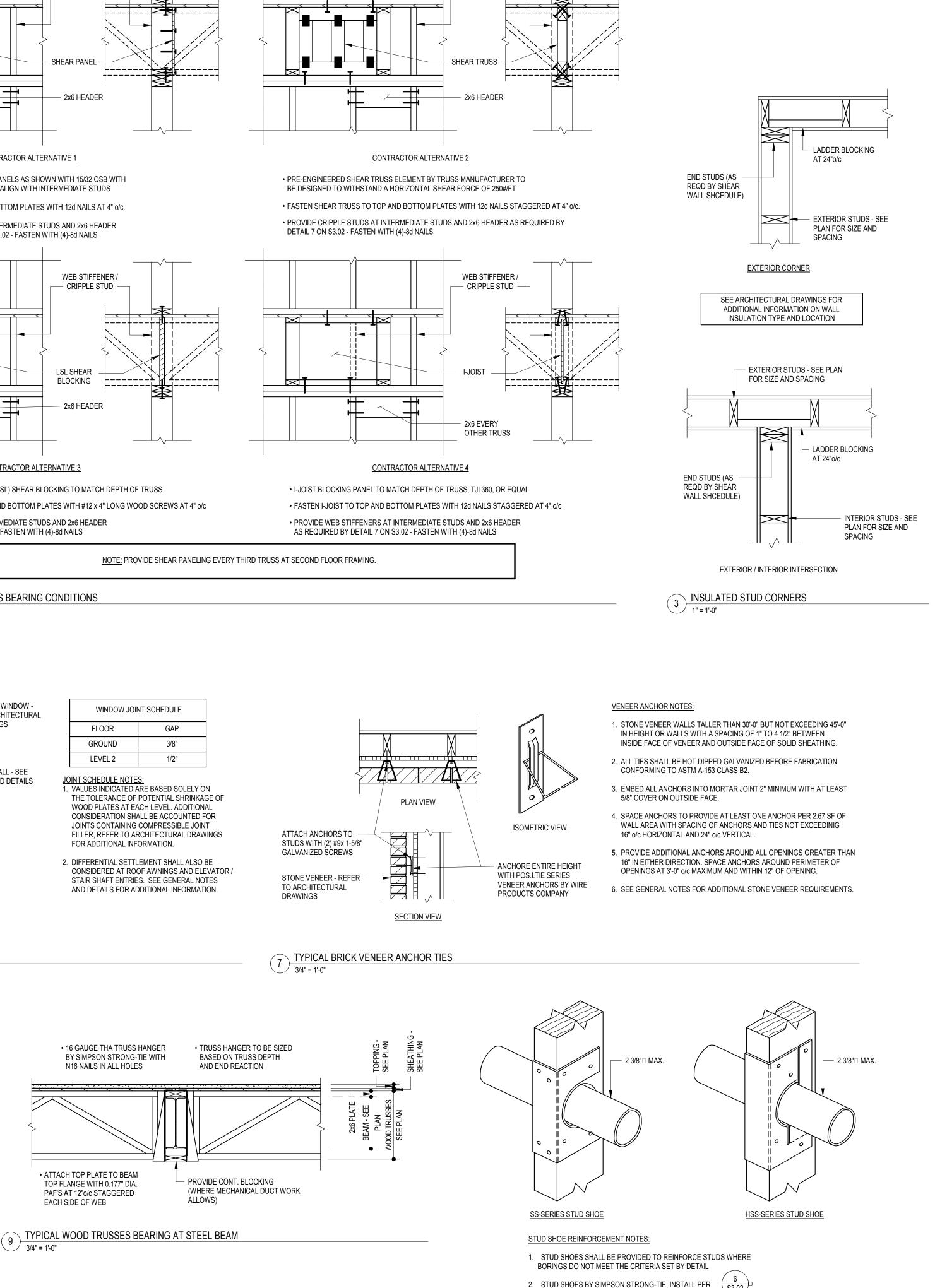
- CRIPPLE STUD -

9

10

11

- a. TRUSS MANUFACTURER IS COMPLETELY RESPONSIBLE FOR DESIGN AND FABRICATION OF ALL ROOF AND FLOOR TRUSSES, CONNECTIONS, AND BRACING. b. SHOP DRAWINGS AND CALCULATIONS SHALL BE PREPARED AND SEALED BY A STRUCTURAL ENGINEER REGISTERED IN THE PROJECT JURISDICTION. SHOP DRAWINGS AND CALCULATIONS ARE TO BE SUBMITTED TO THE STRUCTURAL ENGINEER OF RECORD AND RECEIVE APPROVAL
- PRIOR TO TRUSS FABRICATION. 2. DESIGN LOADS:
- a. FLOOR TRUSSES SHALL BE DESIGNED FOR THE APPROPRIATE FLOOR LOADINGS DESIGNATED IN THE GENERAL NOTES, ON PLAN, AND AS INDICATED IN THE PROJECT SPECIFICATIONS. b. FLOOR TRUSSES SHALL BE DESIGNED TO LIMIT LIVE LOAD DEFLECTION TO L/480 AND TOTAL LOAD DEFLECTION TO L/360.
- c. AS DICTATED BY ANSI/TPI 1-2007, THE WEIGHT OF NON-BEARING PARTITION WALLS CAN BE IGNORED FOR TRUSS DESIGN PURPOSES IF THE FOLLOWING CONDITIONS ARE MET: i. TRUSSES ARE SPACED LESS THAN OR EQUAL TO 24"o/c. ii. TRUSS TOP CHORD PANEL LENGTHS ARE LESS THAN OR EQUAL TO 30". iii. LIVE LOAD IS RESULT OF A RESIDENTIAL OCCUPANCY AND NOT LESS THAN 40 PSF.
- iv. PARTITION WEIGHT IS LESS THAN OR EQUAL TO 60 PLF. v. ADDITIONAL CONSIDERATION MUST BE GIVEN FOR NON-LOAD BEARING PARTITIONS PARALLEL TO SUPPORTING TRUSSES. d. ROOF TRUSSES SHALL BE DESIGNED FOR THE ROOF LOADINGS DESIGNATED IN THE GENERAL NOTES AND IN THE PROJECT SPECIFICATIONS AS WELL AS ANY ADDITIONAL FLAT ROOF AND
- DRIFTED SNOW LOADS SHOWN ON THE ROOF FRAMING PLAN. e. ROOF TRUSSES SHALL BE DESIGNED TO LIMIT LIVE LOAD DEFLECTION TO L/360 OR 1" MAXIMUM AND TOTAL LOAD DEFLECTION OF L/240. COORDINATE TRUSS WEB MEMBERS WITH MECHANICAL DUCTWORK, MECHANICAL AND
- ELECTRICAL EQUIPMENT, AND ARCHITECTURAL LOUVERS. THE WEB SPACING AS SHOWN IS FOR GENERAL CONCEPT ONLY AND MAY NOT REFLECT THE ACTUAL WEB SPACING. ALL COST ASSOCIATED WITH COORDINATION OF ROOF TRUSS WITH MECHANICAL REQUIREMENTS SHALL BE BORNE BY THE CONTRACTOR.
- 3. BRACING:


4

4

5

- a. PERMANENT BRACING REQUIRED FOR INDIVIDUAL TRUSS MEMBERS SHALL BE DESIGNED AND DETAILED BY THE TRUSS MANUFACTURER.
- D. ALL BRACING MEMBERS TO BE 2x4 AND ATTACHED TO TRUSS MEMBERS WITH 2-16d NAILS. c. TEMPORARY BRACING SHALL BE PROVIDED BY THE CONTRACTOR IN ACCORDANCE WITH: "BRACING WOOD TRUSSES COMMENTARY AND RECOMMENDATIONS" - TRUSS PLATE INSTITUTE PUBLICATION BWT - 76.

5

7

- 2. STUD SHOES BY SIMPSON STRONG-TIE, INSTALL PER S3.02 MANUFACTURER'S RECOMMENDATIONS. LOCATE PIPING IN 2x6 STUDS NEAR EDGE OF STUD TO PROPERLY INSTALL STUD SHOE.
- STUD SIZE 2x4 / 2x6 <u>SS-SERIES</u> HSS-SERIES SS1.5 HSS2-SDS1.5 2-2x4 / 2-2x6 SS3 HSS2-2-SD3 3-2x4 / 3-2x6 SS4.5 HSS2-3-SD3 3. ONLY (1) STUD SHOE SHALL BE PERMITTED PER STUD, IF MULTIPLE
- BORINGS EXIST IN SINGLE STUD, CONTACT ENGINEER.

9

10 STUD SHOE REINFORCING 3" = 1'-0"

© COPYRIGHT AYERS SAINT GROSS, 2017

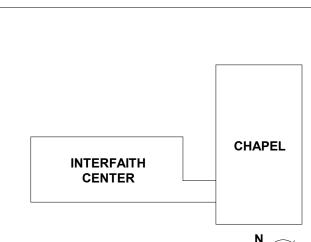
11

10

DRAWING NUMBER

TYPICAL WOOD FRAMING DETAILS

DRAWING NAME


50% CD SET

PROJECT DESIGN PHASE

DRAWING INFORMATION			
ISSUE DATE:	04/28/17		
SCALE:	As indicated		
JOB NO.:	16072		
DRAWN BY:	CRS		

NOT FOR CONSTRUCTION

REVISIONS			
REV. #	DESCRIPTION	DATE	
	KEY PLAN		

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING

410.712.0390 www.spexsys.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

410.347.8500 www.asg-architects.com IT / AV / SECURITY

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

1306 CONCOURSE DRIVE, SUITE 100

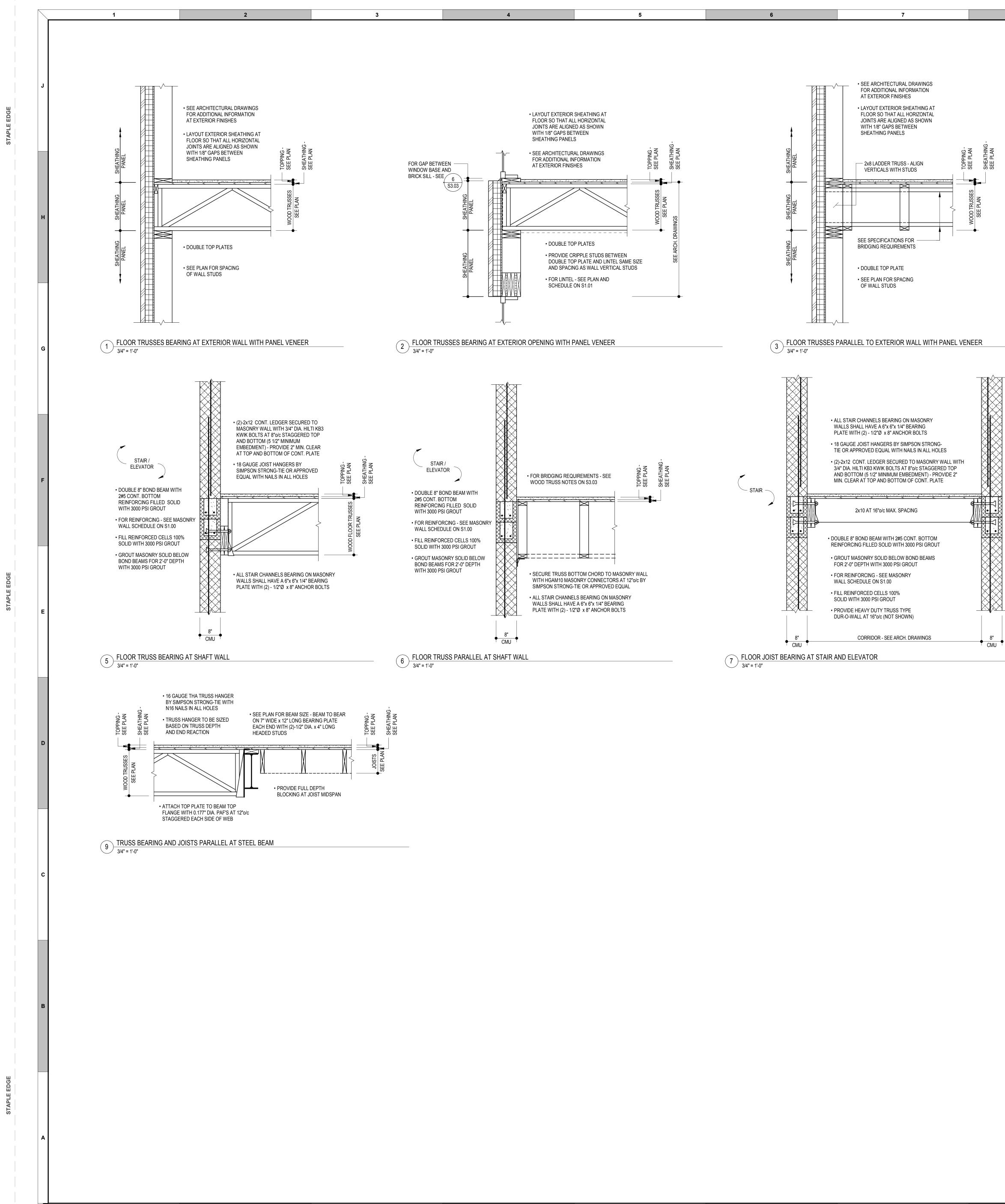
MORABITO CONSULTANTS

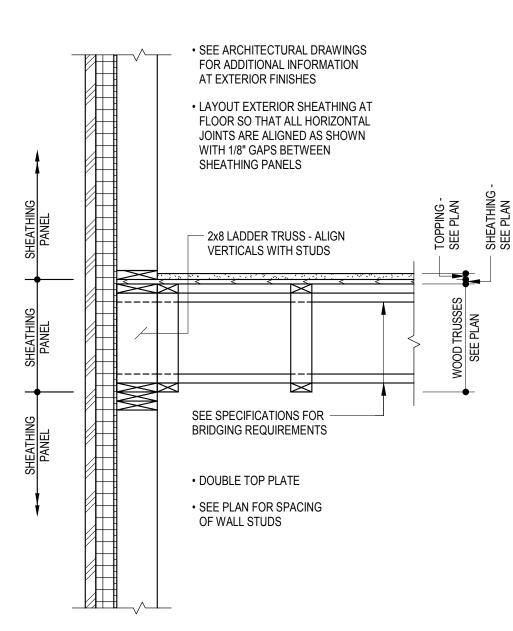
952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

410.467.2377

M/E/P & FIRE PROTECTION ENGINEER

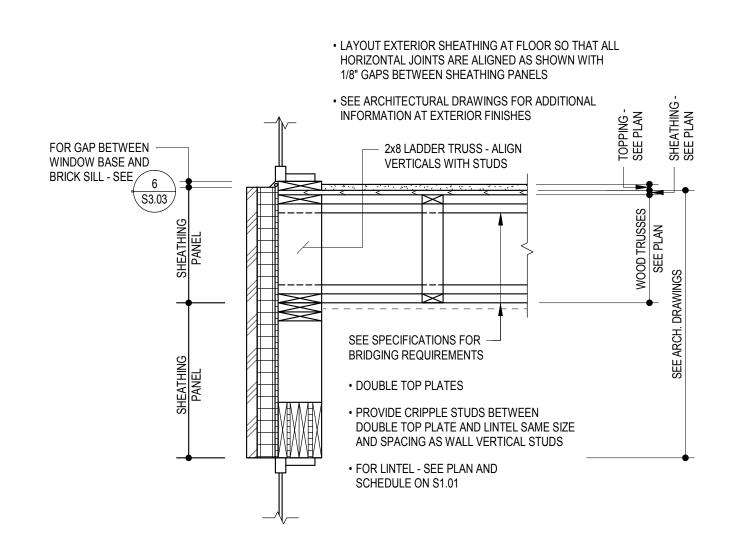

www.morabitoconsultants.com


CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

PROJECT TEAM

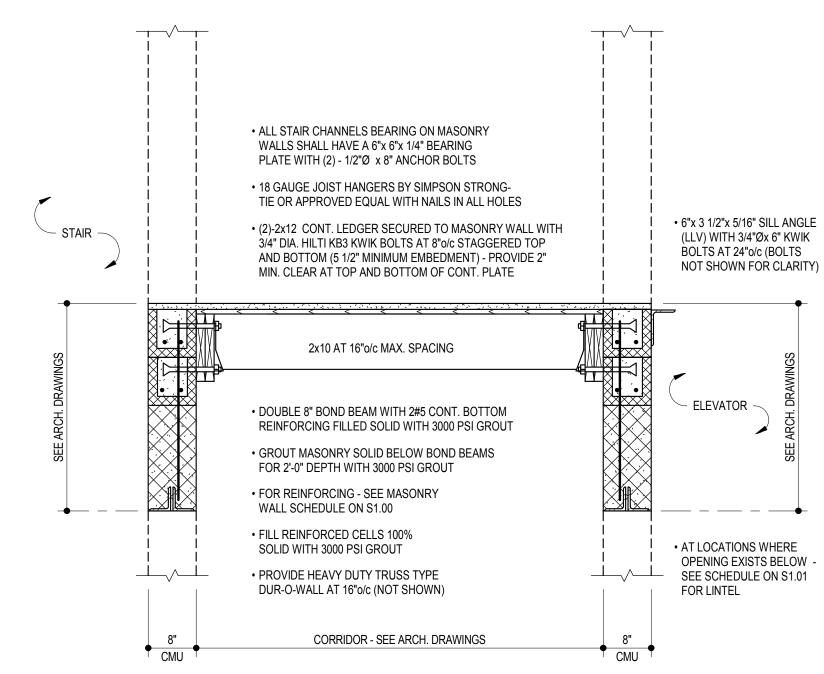
GOUCHER —college—



- ELEVATOR -

4

5


3

10

11

9

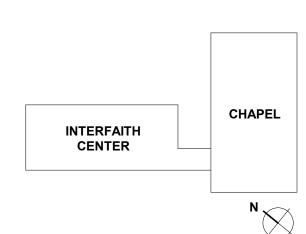
9

© COPYRIGHT AYERS SAINT GROSS, 2017

11

DRAWING NUMBER

FLOOR FRAMING DETAILS


DRAWING NAME

50% CD SET

DRAWING INFORMATION			
ISSUE DATE:	04/28/17		
SCALE:	3/4" = 1'-0"		
JOB NO.:	16072		
DRAWN BY:	CRS		
PROJECT DESIGN PHASE			

NOT FOR CONSTRUCTION

REVISIONS				
REV. #	DESCRIPTION	DATE		
	KEY PLAN			

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

410.712.0390 www.spexsys.com

www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

MUELLER ASSOCIATES

M/E/P & FIRE PROTECTION ENGINEER

1306 CONCOURSE DRIVE, SUITE 100

952 RIDGEBROOK ROAD, SUITE 1700

CIVIL ENGINEER

WBCM

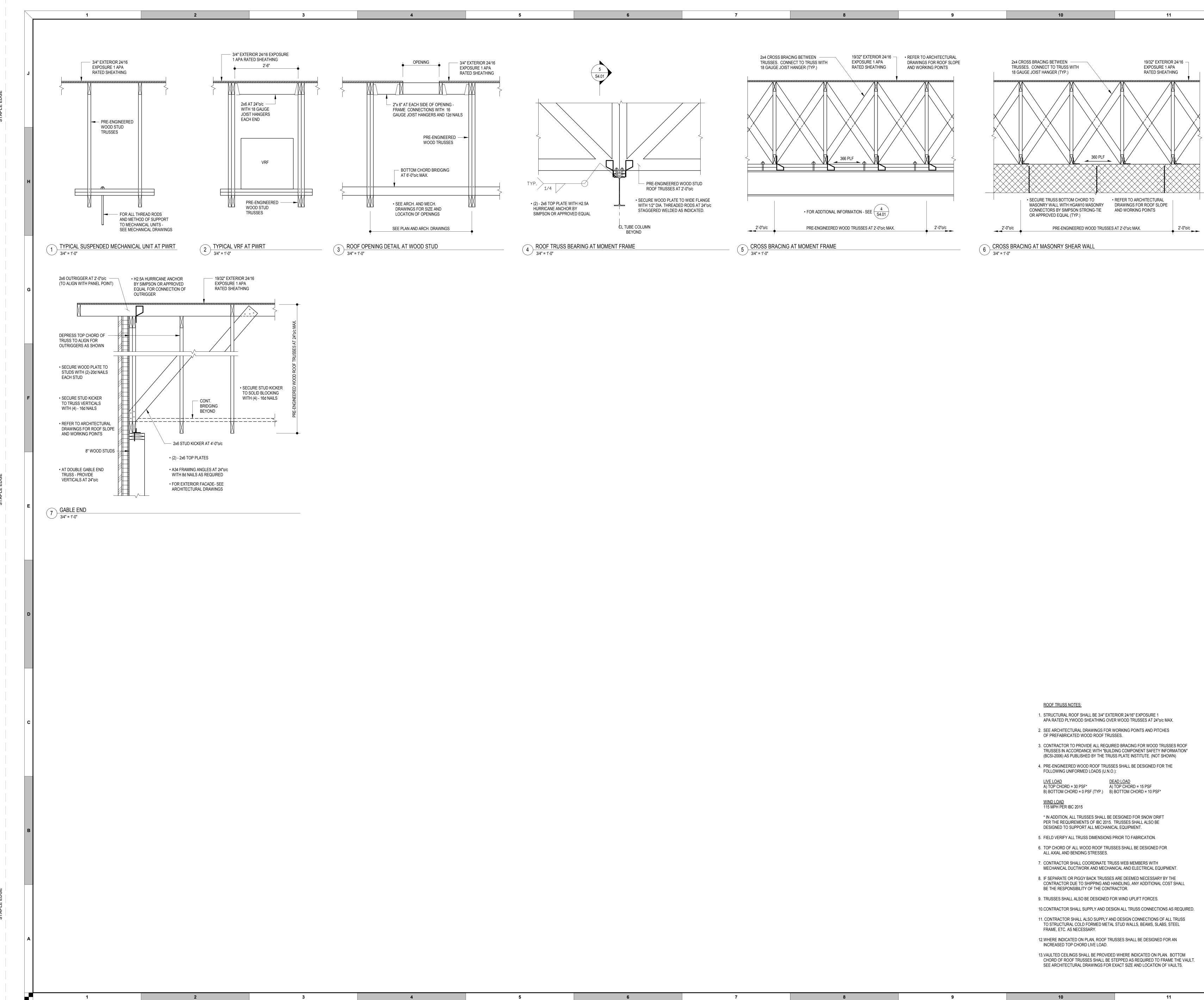
300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

410.512.4500

www.wbcm.com

LANDSCAPE ARCHITECT AYERS SAINT GROSS


1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

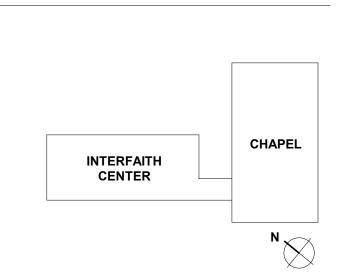
PROJECT INFORMATION GOUCHER —college—

⁴ FLOOR TRUSSES PARALLEL TO EXTERIOR OPENING WITH PANEL VENEER 3/4" = 1'-0"

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

TYPICAL ROOF DETAILS


DRAWING NAME

50% CD SET

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: 3/4" = 1'-0" JOB NO.: 16072 DRAWN BY: CRS PROJECT DESIGN PHASE

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

COMMISSIONING KIBART

410.712.0390 www.spexsys.com

www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100

410.467.2377

www.morabitoconsultants.com

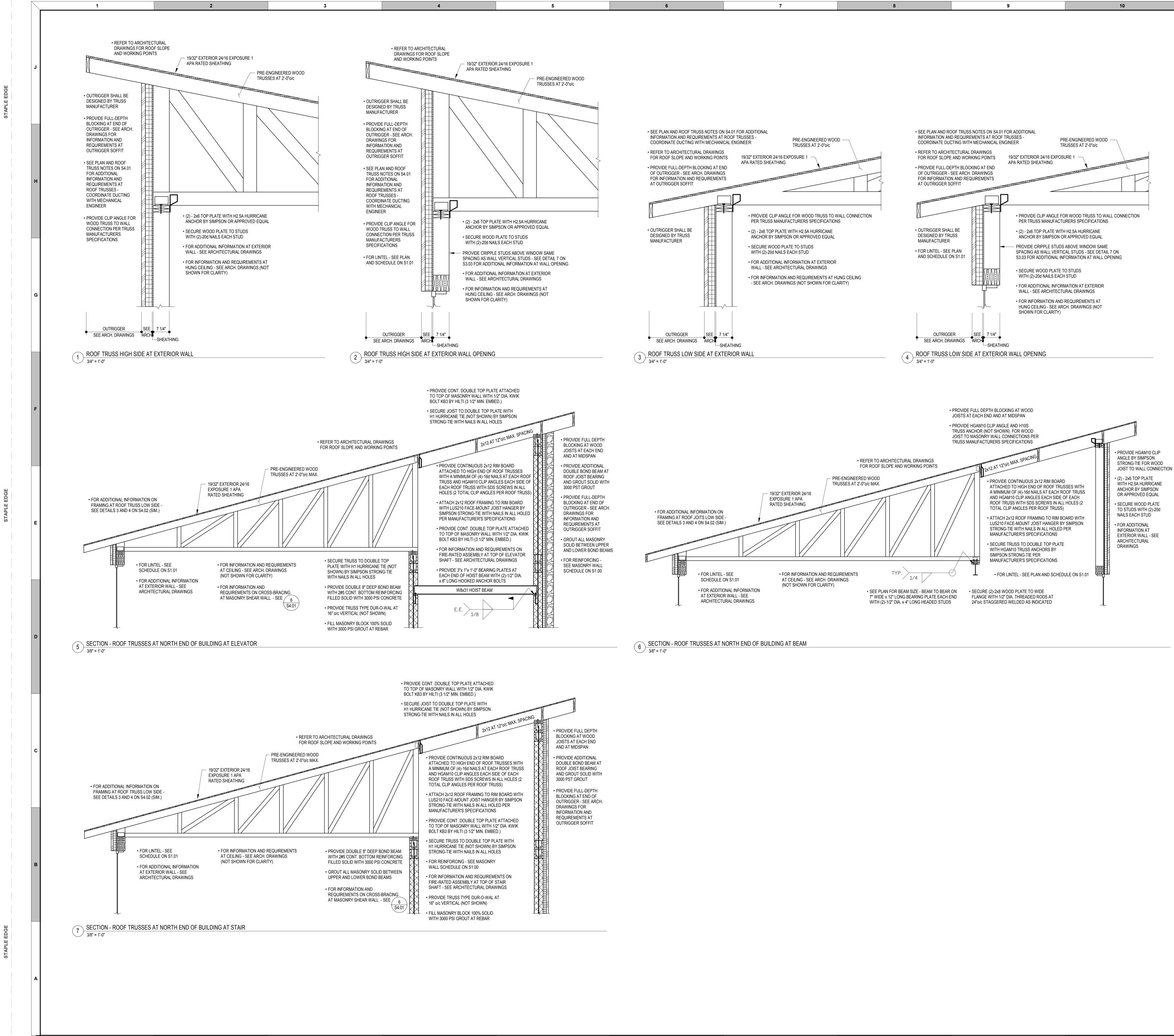
CIVIL ENGINEER WBCM

300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

M/E/P & FIRE PROTECTION ENGINEER

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com


PROJECT TEAM ARCHITECT

AYERS SAINT GROSS

-college-

PROJECT INFORMATION

GOUCHER

4

5

7

9

10

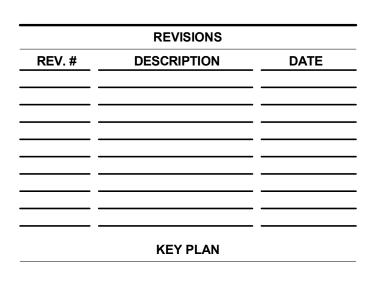
11

DRAWING NUMBER

ROOF DETAILS

DRAWING NAME

50% CD SET


DRAWING INFORMATION **ISSUE DATE:** 04/28/17 SCALE: As indicated JOB NO.: 16072 DRAWN BY: CRS PROJECT DESIGN PHASE

AYERS

CHAPEL INTERFAITH CENTER

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES

COMMISSIONING

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

8815 CENTRE PARK DRIVE, SUITE 200

www.spexsys.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

410.467.2377 www.morabitoconsultants.com

CIVIL ENGINEER WBCM

300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

410.512.4500

www.wbcm.com LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

410.347.8500

www.asg-architects.com

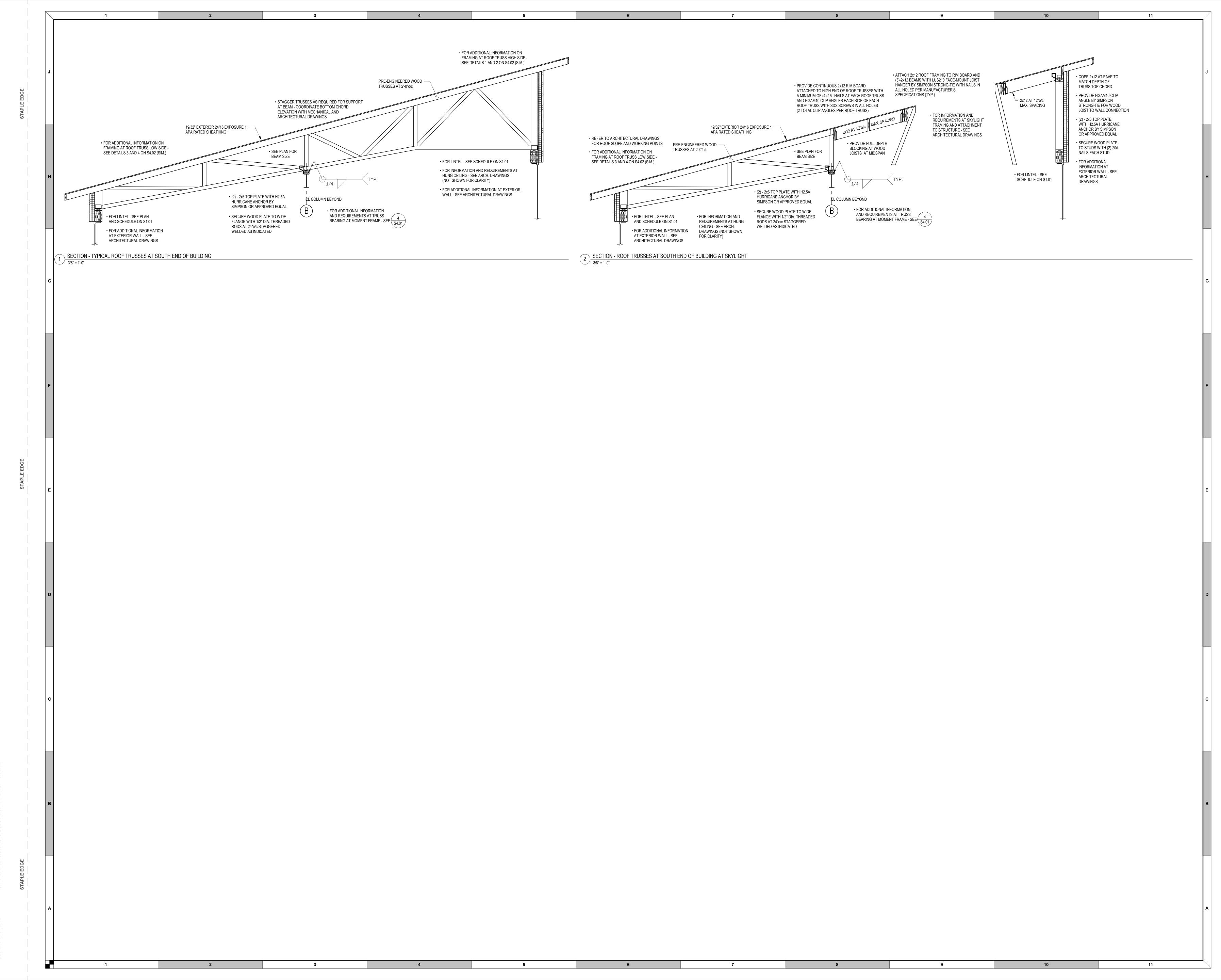
PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS

1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230


410.347.8500

www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER

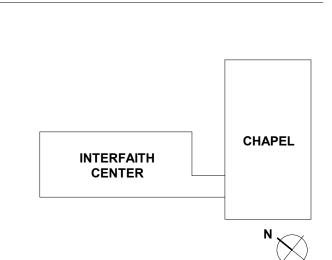
PROJECT INFORMATION GOUCHER —college—

11

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

ROOF DETAILS


DRAWING NAME

50% CD SET

DRAWING INFORMATION ISSUE DATE: 04/28/17 3/8" = 1'-0" SCALE: JOB NO.: 16072 DRAWN BY: CRS PROJECT DESIGN PHASE

NOT FOR CONSTRUCTION

REVISIONS			
REV. #	DESCRIPTION	DATE	
	KEY PLAN		

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

410.750.2246 www.koffel.com

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

KIBART

COMMISSIONING

www.spexsys.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500

www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER

MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100

LINTHICUM, MD 21090

410.646.4500

www.muellerassoc.com

STRUCTURAL ENGINEER

MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

CIVIL ENGINEER

WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

410.467.2377 www.morabitoconsultants.com

TASK, VERIFICATION AND	FREQUENCY OF INSPECTIONS		REFERENCE CRITERIA	
	CONTINUOUS	PERIODIC	REF. STD.	IBC REF.
STRUCTURAL STEEL			AISC 360	1705.6
1. INSPECTION TASKS PRIOR TO WELDING			AISC 360: N5.4	
A. WELDING PROCEDURE SPECIFICATIONS (WPSs) AVAILABLE. B. MANUFACTURER'S CERTIFICATIONS FOR WELDING CONSUMABLES AVAILABLE	X			
C. MATERIAL IDENTIFICATION (TYPE/GRADE)	X	 X		
D. WELDER IDENTIFICATION SYSTEM.		X		
E. FIT-UP OF GROOVE WELDS (INCLUDING JOINT GEOMETRY)				
 JOINT PREPARATION DIMENSIONS (ALIGNMENT, ROOF OPENINGS, ROOT FACE, BEVEL) CLEANLINESS (CONDITION OF STEEL SURFACES) TACKING (TACK WELD QUALITY AND LOCATION) BACKING TYPE AND FIT (IF APPLICABLE) 		X		
F. CONFIGURATION AND FINISH OF ACCESS HOLES.		X		
G. FIT-UP OF FILLET WELDS • DIMENSIONS (ALIGNMENT, GAPS AT ROOT) • CLEANLINESS (CONDITION OF STEEL SURFACE) • TACKING (TACK WELD QUALITY AND LOCATION)		X		
2. INSPECTION TASK DURING WELDING			AISC 360: N5.4	
A. USE OF QUALIFIED WELDERS. B. CONTROL AND HANDLING OF WELDING CONSUMABLES		X		
B. CONTROL AND HANDLING OF WELDING CONSUMABLES PACKAGING EXPOSURE		Х		
C. NO WELDING OVER CRACKED TACK WELDS		X		
D. ENVIRONMENTAL CONDITIONS WIND SPEED WITHIN LIMITS PRECIPITATION AND TEMPERATURE 		X		
E. WPS FOLLOWED • SETTINGS ON WELDING EQUIPMENT • TRAVEL SPEED • SELECTED WELDING MATERIALS • SHIELDING GAS TYPE / FLOW RATE • PREHEAT APPLIED • INTERPASS TEMPERATURE MAINTAINED (MIN / MAX) • PROPER POSITION (F, B, H, OH)		X		
F. WELDING TECHNIQUES • INTERPASS AND FINAL CLEANING • EACH PASS WITHIN PROFILE LIMITATIONS • EACH PASS MEETS QUALITY REQUIREMENTS		X		
3. INSPECTION TASKS AFTER WELDING			AISC 360: N5.4	
A. WELDS CLEANED		X		
B. SIZE, LENGTH AND LOCATIONS OF WELDS	Х			
C. WELDS MEET VISUAL ACCEPTANCE CRITERIA • CRACK PROHIBITION • WELD / BASE-METAL FUSION • CRATER CROSS SECTION • WELD PROFILES • WELD SIZE • UNDERCUT • POROSITY	Х			
D. ARC STRIKES	Х			
E. K-AREA - WHEN WELDING OF DOUBLER PLATES, CONTINUITY PLATES OR STIFFENERS HAS BEEN PERFORMED IN THE K-AREA, VISUALLY INSPECT THE WEB K-AREA FOR CRACKS WITHIN 3 INCHES (75 mm) OF THE WELD	Х			
F. BACKING REMOVED AND WELD TABS REMOVED (IF REQUIRED)	X			
G. REPAIR ACTIVITIES				
H. DOCUMENT ACCEPTANCE OR REJECTION OF WELDED JOINT OR MEMBER	Х			
4. INSPECTION TASKS PRIOR TO BOLTING			AISC 360: N5.6	
A. MANUFACTURE'S CERTIFICATIONS AVAILABLE FOR FASTENER MATERIALS B. FASTENERS MARKED IN ACCORDANCE WITH ASTM REQUIREMENTS	Χ	 V		
C. PROPER FASTENERS SELECTED FOR THE JOINT DETAIL (GRADE, TYPE,		X		
BOLT LENGTH IF THREADS ARE TO BE EXCLUDED FROM SHEAR PLANE)		X		
D. PROPER BOLTING PROCEDURE SELECTED FOR JOINT DETAIL E. CONNECTING ELEMENTS, INCLUDING THE APPROPRIATE FAYING SURFACE		X		
CONDITION AND HOLE PREPARATION, IF SPECIFIED, MEET APPLICABLE REQUIREMENTS.		X		
F. PRE-INSTALLATION VERIFICATION TESTING BY INSTALLATION PERSONNEL OBSERVED AND DOCUMENTED FOR FASTENER ASSEMBLIES AND METHODS USED.		X		
G. PROPER STORAGE PROVIDE FOR BOLTS, NUTS, WASHERS, AND OTHER FASTENER COMPONENTS		X		
5. INSPECTION TASKS DURING BOLTING			AISC 360: N5.6	
A. FASTENER ASSEMBLIES, OF SUITABLE CONDITION, PLACED IN ALL HOLES AND WASHERS (IF REQUIRED) ARE POSITIONED AS REQUIRED		X		
B. JOINT BROUGHT TO THE SNUG-TIGHT CONDITION PRIOR TO THE		v		
		X		
C. FASTENER COMPONENT NOT TURNED BY WRENCH PREVENTED FROM ROTATING D. FASTENERS ARE PRETENSIONED IN ACCORDANCE WITH THE RCSC SPECIFICATION, PROGRESSING SYSTEMATICALLY FROM THE MOST RIGID POINT TOWARD THE FREE EDGES.		X X		
 6. INSPECTION TASKS AFTER BOLTING: DOCUMENT ACCEPTANCE OR REJECTION OF BOLTED CONNECTIONS 	Х		AISC 360: N5.6	
7. INSPECTION OF STEEL ELEMENTS OF COMPOSITE CONSTRUCTION PRIOR TO			AISC 360: N6	
CONCRETE PLACEMENT. A. PLACEMENT AND INSTALLATION OF STEEL DECK	X			
B. PLACEMENT AND INSTALLATION OF STEEL HEADED STUD ANCHORS.	X			
C. DOCUMENT ACCEPTANCE OR REJECTION OF STEEL ELEMENTS.	X		· · · ·	

3

3

2

4

5

4

1

1

TASK, VERIFICATION AND	FREQUENCY OF INSPECTIONS		REFERENCE CRITERIA	
INSPECTION TASK	CONTINUOUS	PERIODIC	REF. STD.	IBC REF.
STEEL CONSTRUCTION OTHER THAN STRUCTURAL STEEL				1705.2.2
1. INSPECTION OF WELDING AND SCREWED CONNECTIONS			AISI S100-07/S1-10 AISI S200-07	
A. REINFORCING STEEL:				
1.) VERIFICATION OF WELDABILITY OF REINFORCING STEEL OTHER THAN ASTM A 706		Х		
2.) REINFORCING STEEL RESISTING FLEXURAL AND AXIAL FORCES IN INTERMEDIATE AND SPECIAL MOMENT	X		AWS D1.4	
3.) SHEAR REINFORCEMENT	X		ACI 318: SECTION 3.5.2	
4.) OTHER REINFORCEMENT				

6

7

5

TASK, VERIFICATION AND	FREQUENCY OF	FREQUENCY OF INSPECTIONS		E CRITERIA
INSPECTION TASK	CONTINUOUS	PERIODIC	REF. STD.	IBC REF.
CONCRETE CONSTRUCTION			ACI 318	1705.3
1. INSPECTION OF REINFORCING STEEL, INCLUDING PRESTRESSING TENDONS, AND PLACEMENT		Х	ACI 318: 2.4, 7.1-7.7	1910.4
2. INSPECTION OF REINFORCING STEEL WELDING IN ACCORDANCE WITH TABLE 1705.2.2, ITEM 2 (IBC)			AWS D1.4 ACI 318: 3.5.2	
3. INSPECTION OF ANCHORS CAST IN CONCRETE WHERE ALLOWABLE LOADS HAVE BEEN INCREASED OR WHERE STRENGTH DESIGN IS USED		Х	ACI 318: 8.1.3, 21.2.8	1908.5, 1909.1
4. INSPECTION OF ANCHORS POST INSTALLED IN HARDENED CONCRETE.		Х	ACI 318: 3.8.6, 8.1.3, 21.2.8	3 1909.1
5. VERIFY USE OF REQUIRED DESIGN MIX.		Х	ACI 318: CH. 4, 5.2-5.4	1904.2, 1910.2, 1910.3
6. AT THIS TIME FRESH CONCRETE IS SAMPLED TO FABRICATE SPECIMENS FOR STRENGTH TESTS, PERFORM SLUMP AND AIR CONTENT TESTS, AND DETERMINE THE TEMPERATURE OF CONCRETE	Х		ASTM C172 ASTM C 31 ACI 318: 5.6, 5.8	1910.10
7. INSPECTION OF CONCRETE AND SHOTCRETE PLACEMENT FOR PROPER APPLICATIONS TECHNIQUES	Х		ACI 318: 5.9, 5.10	1910.6, 1910.7, 1910.8
8. INSPECTION FOR MAINTENANCE OF SPECIFIED CURING TEMPERATURE AND TECHNIQUES		Х	ACI 318: 5.11, 5.13	1910.9
9. INSPECTION OF PRESTRESSED CONCRETE:				
A. APPLICATION OF PRESTRESSING FORCES.	Х			
B. GROUTING OF BOUNDED PRESTRESSING TENDONS IN THE SEISMIC FORCE-RESISTING SYSTEM	Х		ACI 318: 18.18.4, 18.20	
10. ERECTION OF PRECAST CONCRETE MEMBERS.		Х	ACI 318: CH. 16	
11. VERIFICATION OF IN-SITU CONCRETE STRENGTH, PRIOR TO STRESSING OF TENDONS IN POST-TENSIONED CONCRETE AND PRIOR TO REMOVAL OF SHORES AND FORMS FROM BEAMS AND STRUCTURAL SLABS		Х	ACI 318: 6.2	
12.INSPECT FORMWORK FOR SHAPE LOCATION AND DIMENSIONS OF THE CONCRETE MEMBER BEING FORMED		Х	ACI 318: 6.1.1	

	FREQUENCY O	F INSPECTIONS	R	REFERENCE CRITERIA			
TASK, VERIFICATION AND INSPECTION TASK	CONTINUOUS	PERIODIC	IBC REF.	TMS 402 ACI 530 ASCE 5	TMS 602 ACI 530.1 ASCE 6		
MASONRY CONSTRUCTION LEVEL B			1705.4				
1. COMPLIANCE WITH REQUIRED INSPECTION PROVISIONS OF THE CONSTR'N DOCUMENTS AND THE APPROVED SUBMITTALS SHALL BE VERIFIED		X			ART. 1.5		
2. VERIFICATION OF <i>fm</i> AND <i>faac</i> PRIOR TO CONSTRUCTION EXCEPT WHERE SPECIFICALLY EXEMPTED BY THE CODE		X			ART. 1.4 B		
3. VERIFICATION OF SLUMP FLOW AND VISUAL STABILITY INDEX (VSI) AS DELIVERED TO THE SITE FOR SELF-CONSOLIDATING GROUT	Х				ART. 1.5 B.1, B.3		
4. AS MASONRY CONSTRUCTION BEGINS, THE FOLLOWING SHALL BE VERIFIED TO ENSURE COMPLIANCE:							
A. PROPORTIONS OF SITE-PREPARED MORTAR.		X			ART. 2.1, 2.6 A		
B. CONSTRUCTION OF MORTAR JOINTS		X			ART. 3.3 B		
C. GRADE AND SIZE OF PRESTRESSING TENDONS AND ANCHORAGES		X			ART. 2.4 B, 2.4 H		
D. LOCATION OF REINFORCEMENT, CONNECTORS, PRESTRESSING TENDONS AND ANCHORAGES		X			ART. 3.4, 3.6 A		
E. PRESTRESSING TECHNIQUE		X			ART. 3.6 B		
F. PROPERTIES OF THIN-BED MORTAR FOR AAC MASONRY	X (FIRST 5000 SQ. FT.)	X (AFTER FIRST 5000 SQ.			ART. 2.1 C		
5. PRIOR TO GROUTING, THE FOLLOWING SHALL BE VERIFIED FOR COMPLIANCE:		FT.)					
A. GROUT SPACE IS CLEAN		X			ART. 3.2 D, 3.2 F		
B. GRADE, TYPE AND SIZE OF REINFORCEMENT AND ANCHOR BOLTS AND PRESTRESSING TENDONS AND ANCHORAGES		Х		SEC. 1.16	ART 2.4, 3.4		
C. PLACEMENT OF REINFORCEMENT AND CONNECTORS AND PRESTRESSING TENDON AND ANCHORAGES		X		SEC. 1.16	ART. 3.4, 3.2 E, 3.6 A		
D. PROPORTIONS OF SITE-PREPARED GROUT AND PRESTRESSING GROUT FOR BONDED TENDONS		X			ART. 2.6 B, 2.4 G.1.b		
E. CONSTRUCTION OF MORTAR JOINTS		X			ART. 3.3 B		
6. DURING CONSTRUCTION THE FOLLOWING SHALL BE VERIFIED:							
A. SIZE AND LOCATION OF STRUCTURAL ELEMENTS		X			ART. 3.3 F		
B. TYPE, SIZE AND LOCATION OF ANCHORS, INCLUDING OTHER DETAILS OF ANCHORAGE OF MASONRY TO STRUCTURAL MEMBERS, FRAMES OR OTHER CONSTRUCTION		X		SEC. 1.16.4.3, 1.17.1			
C. WELDING OF REINFORCING BARS	Х			SEC. 2.1.8.7.2, 3.3.3.4(c), 8.3.3.4(b)			
D. PREPARATION, CONSTRUCTION AND PROTECTION OF MASONRY DURING COLD WEATHER (TEMPERATURE BELOW 40°F) OR HOT WEATHER (TEMPERATURE ABOVE 90°F)		Х	SEC. 2104.3, 2104.4		ART. 1.8 C, 1.8 D		
E. APPLICATION AND MEASUREMENT OF PRESTRESSING FORCE	Х				ART. 3.6 B		
F. PLACEMENT OF GROUT AND PRESTRESSING GROUT FOR BONDED TENDONS IS IN COMPLIANCE	Х				ART. 3.5, 3.6 C		
G. PLACEMENT OF AAC MASONRY UNITS AND CONSTRUCTION OF THIN-BED MORTAR JOINTS	X (FIRST 5000 SQ. FT.)	X (AFTER FIRST 5000 SQ.			ART. 3.3 B.8		
7. OBSERVE PREPARATION OF GROUT SPECIMENS, MORTAR SPECIMENS AND/OR PRISMS		FT.) X	SEC. 2105.2.2, 2105.3		ART 1.4 B.2a.3, 1.4 B.2.b.3 1.4 B.2.c.3, 1.4 B.3, 1.4 B.4		
8. VERTICAL MASONRY FOUNDATION ELEMENTS		X	1705.4				

6

7

TASK, VERIFICATION AND	FREQUENCY O	F INSPECTIONS	REFERENCE CRITERIA	
INSPECTION TASK	CONTINUOUS	PERIODIC	REF. STD.	IBC REF.
SOILS				1705.6
1. CONTROLLED FILL PLACED UNDER SITE PERMIT				
2. CONTROLLED FILL PLACED UNDER THIS BUILDING PERMIT	Х			
3. VERIFY MATERIALS BELOW SHALLOW FOUNDATIONS ARE ADEQUATE TO ACHIEVE THE DESIGN BEARING CAPACITY		Х		
4. VERIFY EXCAVATIONS ARE EXTENDED TO PROPER DEPTH AND HAVE REACHED PROPER MATERIAL		Х		
5. PERFORM CLASSIFICATION AND TESTING OF COMPACTED FILL MATERIALS		X		
6. VERIFY USE OF PROPER MATERIALS, DENSITIES AND LIFT THICKNESS DURING PLACEMENT AND COMPACTION OF COMPACTED FILL	Х			
7. PRIOR TO PLACEMENT OF COMPACTED FILL, OBSERVE SUBGRADE AND VERIFY THAT SITE HAS BEEN PREPARED PROPERLY		Х		
8. VERIFY INSTALLATION OF DRAIN TILE (GRAVITY/MECHANICAL)		Х		

10

11

SPECIAL INSPECTIONS NOTES:

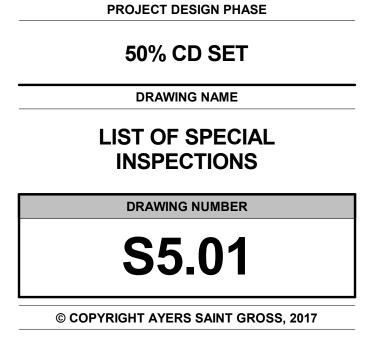
INTERVALS CONVEYING THE PROGRESS OF CONSTRUCTION.

8

1. THE OWNER WILL ENGAGE (SEE CONTRACT REQUIREMENTS) THE SERVICES OF ONE OR MORE SPECIAL INSPECTORS TO PROVIDE INSPECTIONS DURING CONSTRUCTION ON WORK INDICATED IN THE SCHEDULE OF SPECIAL INSPECTIONS. IN ACCORDANCE WITH THE PROVISIONS OF

CHAPTER 17 OF THE INTERNATIONAL BUILDING CODE.

2. SPECIAL INSPECTIONS AND TESTING SHALL BE PERFORMED ON A CONTINUOUS OR PERIODIC FREQUENCY AS NOTED IN THE SCHEDULE. 3. REFER TO THE GENERAL NOTES AND SPECIFICATIONS FOR ADDITIONAL INSPECTION AND TESTING REQUIREMENTS.


9

9

4. DISCREPANCIES SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE CONTRACTOR FOR CORRECTION. IF DISCREPANCIES ARE NOT CORRECTED, CONTACT MORABITO CONSULTANTS PRIOR TO COMPLETION OF THAT PHASE OF THE WORK.

5. THE SPECIAL INSPECTOR SHALL SUBMIT INSPECTION REPORTS TO THE CONTRACTOR, ARCHITECT, OWNER AND MORABITO CONSULTANTS. REPORTS SHALL DOCUMENT REQUIRED INSPECTIONS AND CORRECTIONS OF ANY DISCREPANCIES. REPORTS SHALL BE PROVIDED AT

8

NOT FOR CONSTRUCTION

DRAWING INFORMATION

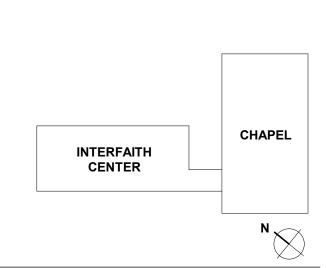
04/28/17

16072 CRS

1/2" = 1'-0"

ISSUE DATE:

SCALE:


JOB NO.:

11

10

DRAWN BY:

	REVISIONS	
REV. #	DESCRIPTION	DATE
·		·
·		
·		
·		
		·

KEY PLAN

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

www.spexsys.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY

WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

www.asg-architects.com MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

PROJECT TEAM

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230 410.347.8500

PROJECT INFORMATION

GOUCHER —college—

M/E/P & FIRE PROTECTION ENGINEER

1306 CONCOURSE DRIVE, SUITE 100 STRUCTURAL ENGINEER MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

410.467.2377 www.morabitoconsultants.com CIVIL ENGINEER

SPARKS, MD 21152

300 EAST JOPPA ROAD, SUITE 200

STAPL	E	
	D	
	С	
	В	
STAPLE EDGE	Α	

	1	2		3		
J			PI	ROJECT GENERAL NOTES	·	
Н						
G						
F						
E						
D						
С						
В						
A						

1

4

3

5

6

			ABB
#	NUMBER, POUND(S)	FFE	FINISH FLOOR ELEVATION / FIXTURES FURNITURE & EQUIPMENT
&	AND	FH	FIRE HYDRANT
@	AT	FHC FHMS	FIRE HOSE CABINET FLAT HEAD MACHINE SCREW
ABV	ABOVE	FHS	FLAT HEAD SCREW
AC ACOUS	AIR CONDITIONING ACOUSTIC(AL)	FHWS FIN	FLAT HEAD WOOD SCREW FINISH
ACT AD	ACOUSTICAL TILE ACCESS DOOR / AREA DRAIN	FIX FL	FIXTURE FLASHING
ADJ	ADJUSTABLE / ADJACENT	FLEX	FLEXIBLE
AESS AF	ARCHITECTURALLY EXPOSED STRUCTURAL STEEL ACCESS FLOOR	FLG FLR	FLOORING FLOOR
AFF	ABOVE FINISH FLOOR	FLUOR	FLOURESCENT
AHU AL	AIR HANDLING UNIT ALUMINUM	FO FOS	FACE OF FACE OF STUD / SLAB / STRUCTURE
ALT	ALTERNATE	FP	FABRIC WRAPPED PANEL
ANC ANNUN	ANCHOR ANNUNCIATOR	FR FRG	FRAME FIRE RATED GLAZING
ANOD	ANODIZED	FRPF	FIREPROOF(ING)
AP APC	ACCOUSTIC PANELS / ACCES PANEL ACOUSTICAL PANEL CEILING	FS FT	FULL SIZE / FLOOR SINK FOOT / FEET / FIRE TREATED
APPROX	APPROXIMATE(LY)	FURR	FURRING
ARCH AVG	ARCHITECT(URAL) AVERAGE	FVC FVEC	FIRE VALVE CABINET FIRE VALVE AND FIRE EXTINGUISHER CABINET
BALC BC	BALCONY BOTTOM CURB	GA GALV	GUAGE GALVANIZED
BD	BOARD FOOT / BOARD FEET	GB	GRAB BAR
BITUM BLDG	BITUMINOUS BUILDING	GC GCMU	GENERAL CONTRACTOR GLAZED CONCRETE MASONRY UNIT
BLK	BLOCK	GEN	
BLKG BLKHD	BLOCKING BULKHEAD	GFCMU GL	GROUND FACE CONCRETE MASONRY UNIT GLASS / GLAZING
BLW	BELOW BEAM	GND GR	GROUND GRADE
BM BO	BOTTOM OF	GRG	GRADE GLASS REINFORCED GYPSUM
BOT	BOTTOM	GWB	GYPSUM WALL BOARD
BRG BRG PL	BEARING BEARING PLATE	GYP	GYPSUM
BRK	BRICK	H	HEIGHT / HIGH HOSE BIB
BRKT BSMT	BRACKET BASEMENT	HB HC	HOLLOW CORE
BTW BUR	BETWEEN BUILT UP ROOF	HDCP HDWD	HANDICAP(PED) HARDWOOD
		HDWR	HARDWARE
C CAB	CARPET CABINET	HK HM	HOUSEKEEPING HOLLOW METAL
CBB	CEMENTIOUS BACKER BOARD	HMF	HOLLOW METAL FRAME
CEM CER	CEMENT CERAMIC	Horiz Hr	HORIZONTAL(LY) HOUR
CI	CAST IRON	HTG	HEATING
CIP CJ	CAST IN PLACE CONTROL JOINT	HVAC HW	HEATING VENTILATION AIR CONDITIONING HOT WATER
CL	CENTERLINE	HWH	HOT WATER HEATER
CLG CLKG	CEILING / COOLING CAULKING	ID	INSIDE DRAWER / INNER DIAMETER
CLL	CONTRACT LIMIT LINE	IN	INCH
CLOS CLR	CLOSET CLEAR	INCAND INS	INCANDESCENT INSULATION / INSULATED
CMU	CONCRETE MASONRY UNITS	INT	INTERIOR
CNTR CO	COUNTER CLEAN OUT / CLEAR OPENING	INTRM INV	INTERMEDIATE INVERT
COL	COLUMN		
COMB COMP	COMBINATION COMPACT(ED)	JAN JST	JANITOR JOIST
CONC	CONCRETE	JT	JOINT
CONSTR CONT	CONSTRUCTION CONTINUOUS	KD	KNOCK DOWN
COP	COPPER CORRIDOR	KIT	
CORR CORS	COURSE	KO KP	KNOCK OUT KICK PLATE
CPT			
CRF CS	COLD ROLLED FORMED STEEL CAST STONE	L LAB	LONG / LENGTH LABORATORY
CS LINT		LAM	
CSK CT	COUNTERSINK / COUNTERSUNK CERAMIC TILE	LAV LB(S)	LAVATORY POUNDS
CTR CU	CENTER CUSPIDOR	LC LCKR'S	LEAD COATED LOCKERS
CW	COLD WATER	LDG	LANDING
D	DEEP / DEPTH / DRAIN	LEV LF	LEVEL LINEAR FOOT (FEET) / LIGHT FIXTURE
DB	DECIBEL	LG	LENGTH
DBL DEPT	DOUBLE DEPARTMENT	LH LIN	LEFT HAND LINOLEUM
DET	DETAIL	LP	LIGHT POLE
DF DH	DRINKING FOUNTAIN DOUBLE HUNG	LPT LT	LOW POINT LIGHT
DIA	DIAMETER	LT WT	LIGHT WEIGHT
DIAG DIM	DIAGONAL(LY) DIMENSION	LVR	LOUVER
DISP	DISPENSER	MACH	MACHINE
DIV DMPF	DIVISION DAMPPROOF(ING)	MAS MATL	MASONRY MATERIAL
DN DR	DOWN DOOR / DRAIN	MAX ME	MAXIMUM MATCH EXISTING
DS	DOWNSPOUT	MECH	MECHANICAL
DSP DW	DRY STANDPIPE DISHWASHER	MEMB MEP	MEMBRANE MECHANICAL ELECTRICAL PLUMBING
DWG	DRAWING	MEZZ	MEZZANINE
DWR	DRAWER	MFR MH	MANUFACTURER MANHOLE
E	EAST / EPOXY	MIN	MINIMUM
EA EJ	EACH EXPANSION JOINT	MIR MISC	MIRROR MISCILLANEOUS
EL	ELEVATION	MO	MASONRY OPENING(S)
ELEC ELEV	ELECTRIC(AL) ELEVATOR	MOD MP	MODIFIED MOP RACK
EMER	EMERGENCY	MR	MOISTURE RESISTANT
ENCL ENG	ENCLOSURE ENGINEER	MTD MTG	MOUNTED MOUNTING
ENT	ENTRANCE	MTL	METAL
EOS EPB	EDGE OF SLAB ELECTRICAL PANEL BOARD	MULL MW	MULLION MICROWAVE
EQ	EQUAL		
EQUIP ES	EQUIPMENT EXPOSED STRUCTURE	N NIC	NORTH NOT IN CONTRACT
ES/EE	EMERGENCY SHOWER / EMERGENCY EYEWASH	NO	NUMBER
ETR EWC	EXISTING TO REMAIN ELECTRIC WATER COOLER	NOM NRC	NOMINAL NOISE REDUCTION COEFFICIENT
EXP	EXPANDED / EXPANSION	NTS	NOT TO SCALE
EXST EXT	EXISTING EXTERIOR	OA	OVERALL / OUTSIDE AIR
EXTR	EXTRUDED	OC	ON CENTER
F	FAHRENHEIT	OD OFCI	OUTSIDE DIAMETER / OVERFLOW DRAIN OWNER FURNISHED CONTRACTOR INSTALLED
FA	FIRE ALARM/GAGE	OFF	OFFICE
FCU FD	FAN COIL UNIT FLOOR DRAIN	OFOI OH	OWNER FURNISHED OWNER INSTALLED OPPOSITE HAND
FDN FDV	FOUNDATION CHANNEL FIRE DEPARTMENT VALVE	OHMS OHWS	OVAL HEAD MACHINE SCREW OVAL HEAD WOOD SCREW
FE	FIRE EXTINGUISHER	OP	OVERFLOW PIPE
FEC FF	FIRE EXTINGUISHER CABINET FINISH FACE / FINISH FLOOR	OPER	OPERABLE

6

7

7

8

4

5

8	9	10	11	
ABBREVIATIONS			SYMBOLS	
PMENT OPNG OPP OSD	OPENING OPPOSITE OPEN SITE DRAIN		(0)	
OZ	OUNCE		(0) + COLUMN GRIDLINE	
PA PBD	PLANTING AREA PARTICLE BOARD			J
PC PCP	PRECAST PARTICLE CEMENT PLASTER			
PERF PERM PG	PERFORATE(D) PERIMETER PAINT GRADE		A1.01 ELEVATION	
PL PLAM	PLATE / PROPERTY LINE PLASTIC LAMINATE			
PLAS PLP	PLASTER PLASTER PAINTED		A1.01 SIM DETAIL CALLOUT	
PNL POL	PANEL POLISHED			
PR PROJ PS	PAIR PROJECT PULL STATION			
PSF PSI	POUNDS PER SQUARE FOOT POUNDS PER SQUARE INCH		1 A1.01 1 INTERIOR ELEVATION	
PT PTD	POINT / PAINT PAINTED		1	н
PTN PVC	PARTITION POLYVINYL CHLORIDE		BUILDING / WALL SECTION	
PVG PWD	PAVING PLYWOOD			
QT QTY	QUARRY TILE QUANTITY			
R	RISER / REGISTER		1 / A1.01 VIEW REFERENCE	
RA RAD/R	RETURN AIR RADIUS			
RBR RCP	RUBBER REFLECTED CEILING PLAN		1i WALL TYPE	
RD RECEPT REF/RE	ROOF DRAIN RECEPTICLE REFERENCE			
REFRIG REG	REFERENCE REFRIDGERATOR REGISTER			G
REINF REQD	REINFORCE(MENT)(ING) REQUIRED		1t WINDOW TYPE	
RESIL RET	RESILIENT RETURN			
RETG REV	RETAINING REVISION / REVERSE		DOOR NUMBER	
RF RFG	RAISED FLOOR ROOFING		(101) DOOR NUMBER	
RM RO	ROOM ROUGH OPENING / ROUND			
RWC RWL	RAIN WATER CONDUCTOR RAIN WATER LEADER			
S SA	SOUTH / SINK SUPPLY AIR	-	MATERIALS	
SC SCH	SOLID CORE SCHEDULE	-		F
SCONC SD	STAINED CONCRETE STORM DRAIN / SOAP DISPENSER / SMOKE DETECTOR		CONCRETE BLOCK (CMU)	
SEAL SECT	SEALANT SECTION		CONCRETE	
SF SFT	SQUARE FOOT (FEET) STRUCTURAL FACING TILE		STONE	
SH SHT	SHOWER / SPRINKLER HEAD SHEET		BATT INSULATION	
SHTG SHVG	SHEATHING SHELVING			
SIM SL SLC	SIMILAR SLATE SEALED CONCRETE		GYPSUM WALL BOARD EXTERIOR PLASTER	
SLC SM SMS	SEALED CONCRETE SHEET METAL SHEET METAL SCREW		2X2 ACOUSTIC TILE	
SPEC SPKR	SPECIFICATION SPEAKER		WOOD PANEL CEILING	
SQ SS	SQUARE STAINLESS STEEL			E
SS/EW SSH	SAFETY SHOWER / EYEWASH SAFETY SHOWER HEAD			
STC STD	SOUND TRANSMISSION CLASS(IFICATION) STANDARD			
STL STOR STRUCT	STEEL STORAGE STRUCTURAL			
STRUCT SUSP SV	STRUCTURAL SUSPEND(ED) / SUSPENSION SHEET VINYL			
SYM SYS	SYMMETRICAL SYSTEM			
т	TREAD / TOP			
TEL TEMP	TELEPHONE TEMPERED			
TER TG/T&G	TERRAZZO TONGUE AND GROOVE			D
THK THRES TO	THICK(NESS) THRESHOLD			
TO TOC TOS	TOP OF TOP OF CONCRETE / CURB TOP OF SLAB			
TOW TV	TOP OF SLAB TOP OF WALL TELEVISION			
ТҮР	TYPICAL			
UC UH	UNDERCUT UNIT HEATER			
UL UNFIN	UNDERWRITER'S LABORATORIES, INC UNFINISHED			
UNO UON	UNLESS NOTED OTHERWISE UNLESS OTHERWISE NOTED			
UR US UTIL	URINAL UNDERSIDE UTILITY			с
VAR	VARIES			
VB VCT	VAPOR BARRIER VINYL COMPOSITION TILE			
VERT VEST	VERTICAL(LY) VESTIBULE			
VIF VIN	VERIFY IN FIELD VINYL			
VP VTR	VENEER PLASTER VENT TERMINATION PIPE			
VWC	VINYL WALL COVERING			
W W/ W/O	WEST / WIDE / WIDTH WITH WITHOUT			
WC WD	WATER CLOSET WOOD			P
WD WG WH	WOOD WIRE GLASS WALL HYDRANT / WATER HEATER			В
WIN WOM	WINDOW WOMEN			
WP WPC	WATERPROOF(ING) WOOD PANEL CEILING			
WS WSCT	WEATHERSTRIPPING WAINSCOT			
WT WWF	WEIGHT WELDED WIRE FABRIC			

9

© COPYRIGHT AYERS SAINT GROSS, 2017

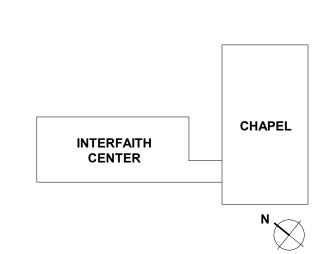
11

10

DRAWING NUMBER

ABBREVIATIONS AND SYMBOLS

DRAWING NAME


PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: ASG

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

KIBART TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING 901 DULANEY VALLEY ROAD, SUITE 301

HANOVER, MD 21076 410.712.0390 www.spexsys.com

7257 PARKWAY DRIVE, SUITE 260

410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

SPARKS, MD 21152 410.467.2377

www.morabitoconsultants.com **CIVIL ENGINEER** WBCM

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286

952 RIDGEBROOK ROAD, SUITE 1700

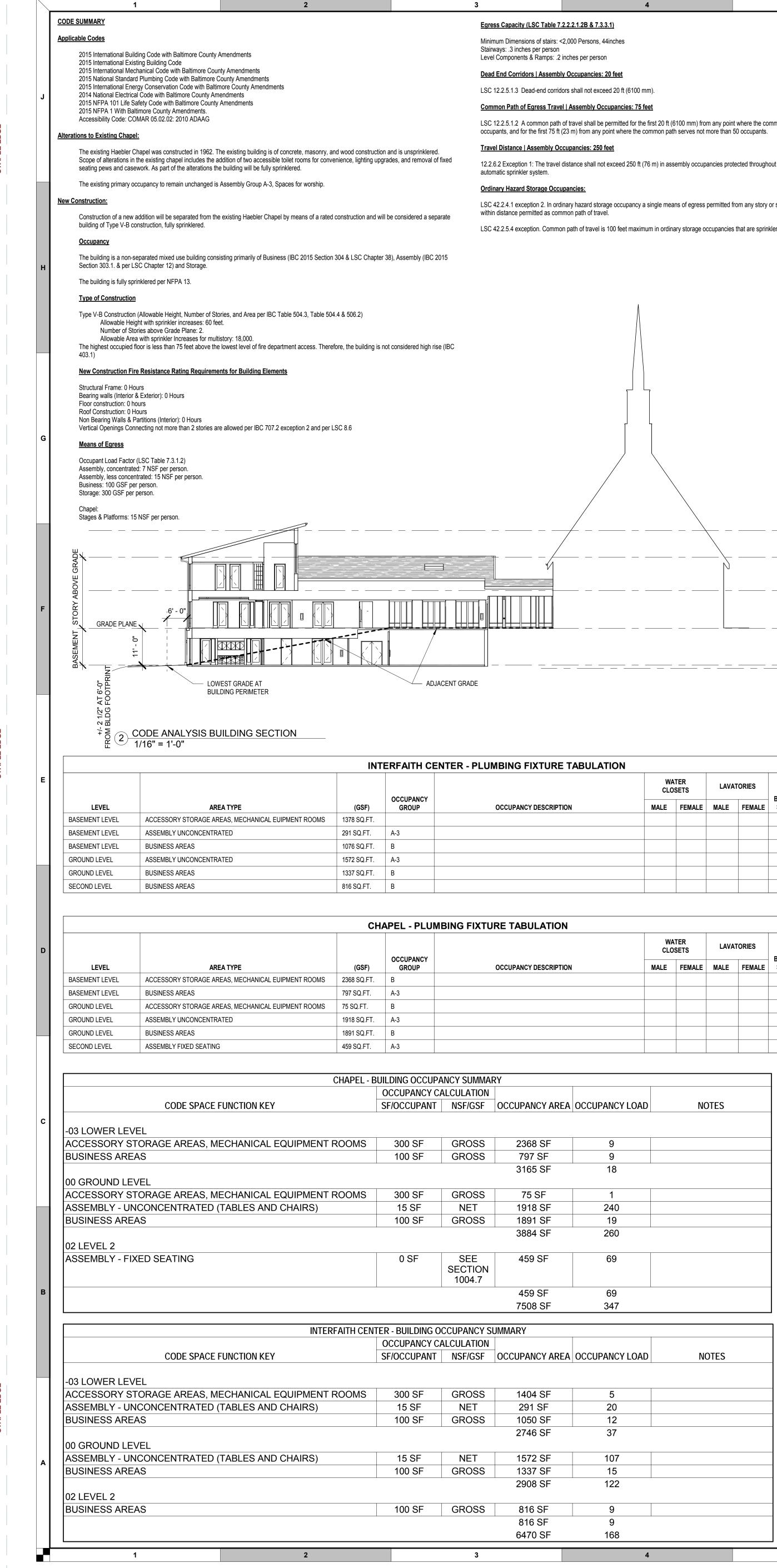
STRUCTURAL ENGINEER MORABITO CONSULTANTS

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

410.347.8500 www.asg-architects.com MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100

M/E/P & FIRE PROTECTION ENGINEER

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230


PROJECT TEAM ARCHITECT

1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOUCHER COLLEGE

GOUCHER —college—

GOLDSMITH INTERFAITH CENTER

4	5		6	7	
<u>.1)</u>				-	
inches			NON-RATED SMOKE PARTITION		
			1/2 HOUR RATED FIRE BARRIER	\	
0 fact			1 HOUR RATED FIRE BARRIER	REFER TO FLOOR PLANS FOR PARTITION TYPES AND	🚽 🖵 45 MINU
<u>0 feet</u>			1 1/2 HOUR RATED FIRE BARRIER	PARTITION SCHEDULE FOR SPECIFIC UL ASSEMBLIES	🚽 🖵 60 MINU
d 20 ft (6100 mm).			2 HOUR RATED FIRE BARRIER		🚽 🖵 90 MINU
upancies: 75 feet			3 HOUR RATED FIRE BARRIER		🚽 🖵 180 MIN
ermitted for the first 20 ft (6100 mm) from any poir int where the common path serves not more than eet exceed 250 ft (76 m) in assembly occupancies pro	50 occupants.	W = X = Y =	RESS COMPONENT SYMBOL: = WIDTH OF LIMITING COMPONENT IN INCHES. DC "ACTUAL EXIT LOAD" - PROPOSED NUMBER OF C "CALCULATED EXIT CAPACITY" - MAX. NUMBER C EGRESS WIDTH PER OCCUPANT SERVED (INCHE	OCCUPANTS USING EXIT OF OCCUPANTS EXIT CAN ACCOMODATE	
		000 SF 	TOTAL AREA OF SPACE		
e occupancy a single means of egress permitted	from any story or section provided exit can be reached		NUMBER OF OCCUPANTS IN SPACE	FC	FIRE EXTINGUISHER/ STAND
100 feet maximum in ordinary storage occupancie:	s that are sprinklered.	Room name	INDIVIDUAL ROOM NAMES	FE	FIRE EXTINGUISHER - BRACK
			INDIVIDUAL ROOM NUMBERS	FR	FIRE EXTINGUISHER CABINE
		←	TRAVEL DISTANCE - PATH OF TRAVEL		
		F	DENOTES ACCESSIBLE MOBILITY FEATURES PER ADA 2010 T224.2		
)	DENOTES ACCESSIBLE COMMUNICATION FEATURES PER ADA 2010 T224.4		
		<u>LIFE SA</u> 1/16" =	FETY LEGEND 1'-0"		
					SECOND FLOOR IS CONSID A BUSINESS OCCUPANCY V AN OCCUPANT LOAD OF 8.
					LSC: 38.2.4.6: A SINGLE MEA OF EGRESS SHALL BE PERMITTED FOR A MAXIMUI STORY SINGLE TENANT BUILDING PROVIDED THAT BUILDING IS PROTECTED B' APPROVED, SUPERVISED AUTOMATIC SPRINKLER SYS AND TOTAL TRAVEL DISTAN TO THE OUTSIDE DOES NOT EXCEED 100 FEET.
		OOF '- 4"			TOTAL TRAVEL DISTANCE T THE OUTSIDE = 87' < 100'
	03 ROOF BEAF				
	<u>02</u> LEV 445	EL 2 - 4"			
	00_ <u>GROUND L</u> E 434	VEL - 0"			
	03 LOWER LE	VEL			

WATER LAVATORIES CLOSETS BATHTUBS / DRINKING MALE FEMALE MALE FEMALE SHOWERS FOUNTAINS OTHER

-04 CHAPEL BASEMENT

422' - 0" 🛡

WATER CLOSETS		LAVATORIES		BATHTUBS /	DRINKING	
MALE	FEMALE	MALE	FEMALE	SHOWERS	FOUNTAINS	OTHER

ANCY LOAD	NOTES
	NOTES
9	
9	
18	
1	
240	
19	
260	
69	
69	
347	
UT1	
ANCY LOAD	NOTES
5	
20	
12	
37	
107	
15	
122	
•	
9	
9 168	
INX	

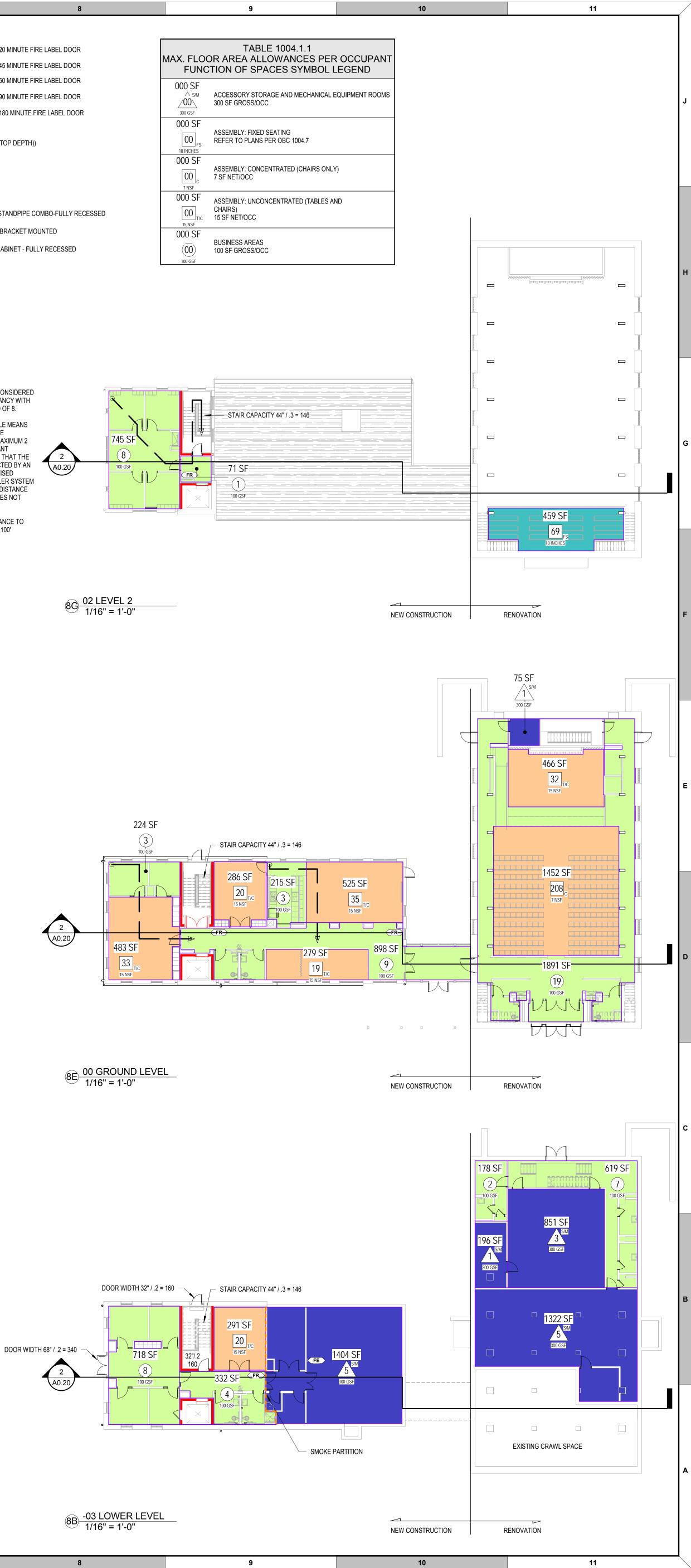
5

4

OCCUPANCY TYPE LEGEND

ACCESSORY STORAGE AREAS, MECHANICAL EQUIPMENT ROOMS

ASSEMBLY - FIXED SEATING


ASSEMBLY - UNCONCENTRATED (TABLES AND CHAIRS)

7

BUSINESS AREAS

Calculating...

6

DRAWING NUMBER

PLANS

CODE SUMMARY & EGRESS

DRAWING NAME

DOCUMENTS

PROJECT DESIGN PHASE **50% CONSTRUCTION**

ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: ASG

DRAWING INFORMATION

CONSTRUCTION

NOT FOR

AYERS SAINT GROSS **ARCHITECTS + PLANNERS**

CHAPEL INTERFAITH CENTER

DESCRIPTION DATE REV. # KEY PLAN

REVISIONS

www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

TOWSON, MD 21204 410.494.1111

KIBART

COMMISSIONING

www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

SPARKS, MD 21152 410.467.2377 **CIVIL ENGINEER** WBCM

www.morabitoconsultants.com

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286

952 RIDGEBROOK ROAD, SUITE 1700

www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com **M/E/P & FIRE PROTECTION ENGINEER** MUELLER ASSOCIATES

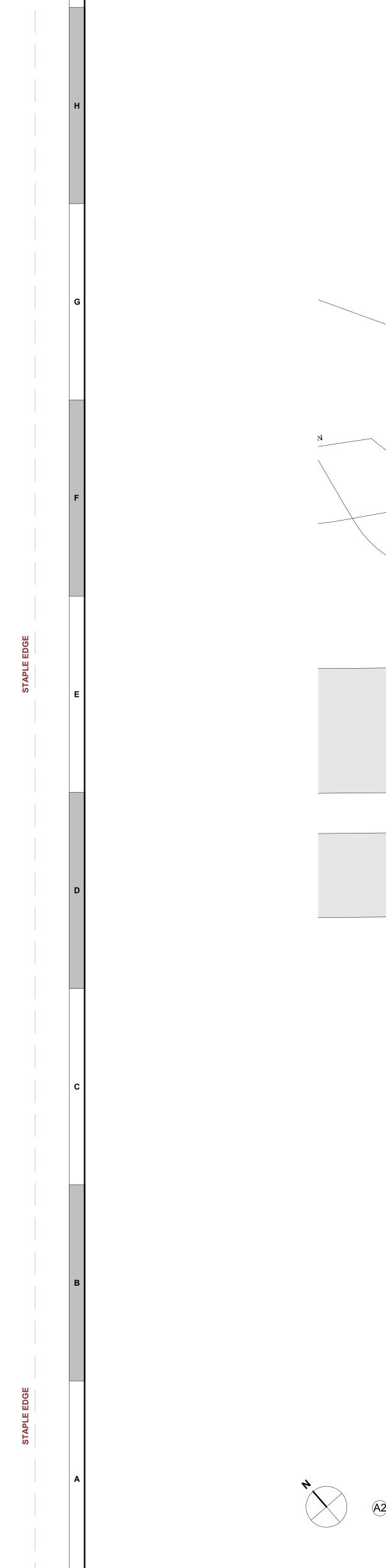
1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

410.646.4500

GOUCHER COLLEGE BALTIMORE MD 21204 PROJECT TEAM

1021 DULANEY VALLEY RD

ARCHITECT


AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

GOUCHER

GOLDSMITH INTERFAITH

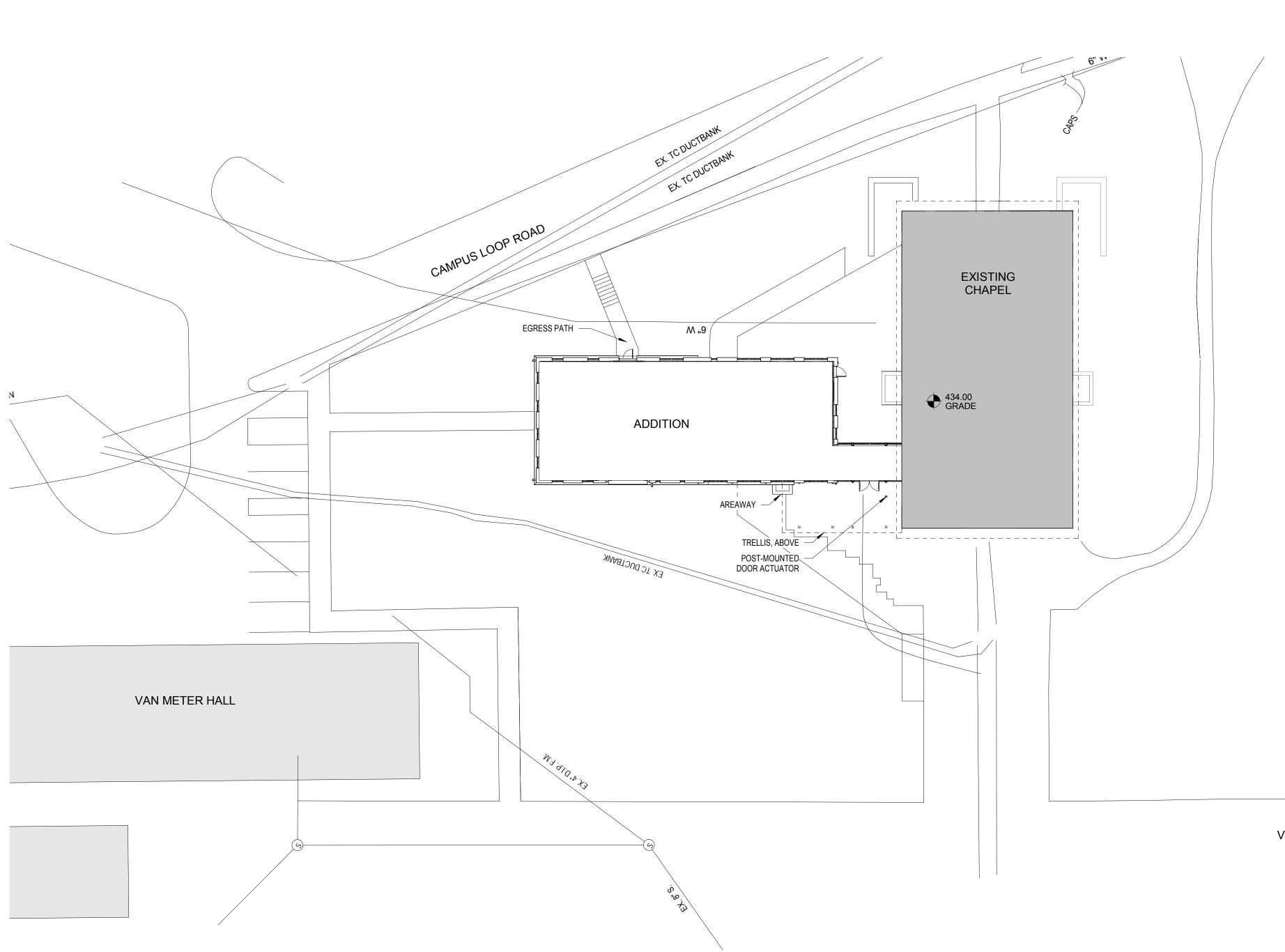
CENTER

1

2

3

4


5

6

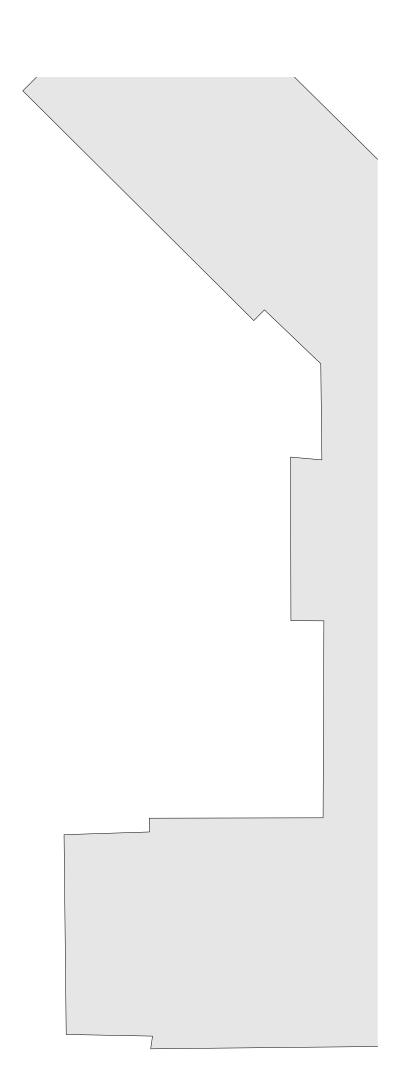
7

8

9

5

4


6

7

A2 SITE PLAN 1" = 20'-0"

2

3

9

10

11

VAN METER HIGHWAY


8

© COPYRIGHT AYERS SAINT GROSS, 2017

11

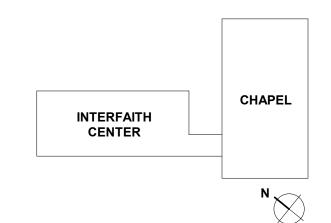
10

DRAWING NUMBER

ARCHITECTURAL SITE PLAN

DRAWING NAME

50% CONSTRUCTION DOCUMENTS


PROJECT DESIGN PHASE

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: 1" = 20'-0" JOB NO.: 21641.00 DRAWN BY: ASG

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

KIBART

COMMISSIONING

www.spexsys.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

GOLDSMITH INTERFAITH CENTER GOUCHER COLLEGE

1021 DULANEY VALLEY RD BALTIMORE MD 21204

PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

STRUCTURAL ENGINEER

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

www.morabitoconsultants.com

CIVIL ENGINEER WBCM

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

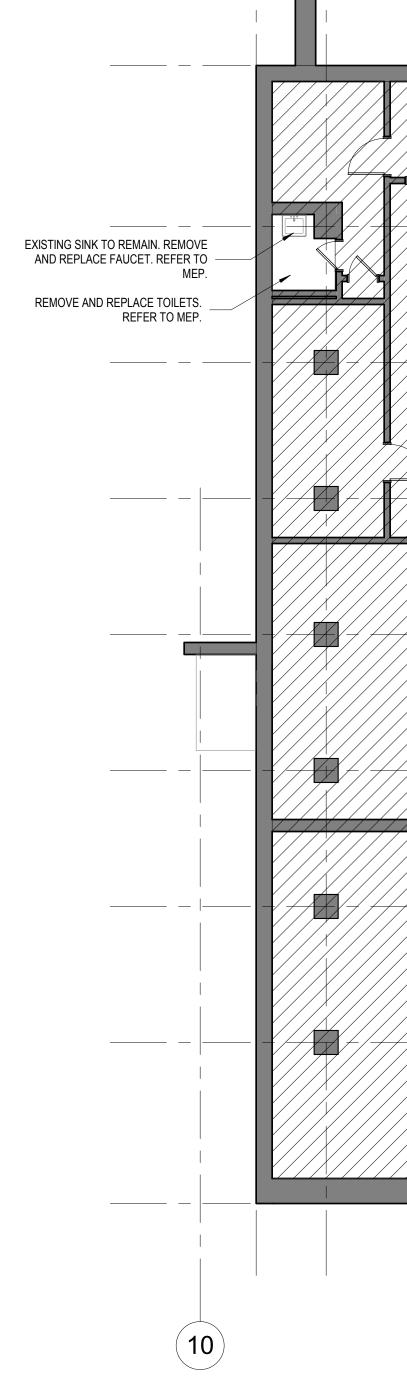
LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

www.asg-architects.com

IT / AV / SECURITY

	DEMOLITION GENERAL NOTES
	1. DEMOLITION PLANS ARE PROVIDED FOR THE SOLE BENEFIT OF THE CONTRACTOR AND SHALL NOT DETERMINE THE TOTAL SCOPE OR LIMITS OF DEMOLITION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PERFORMING ALL DEMOLITION AS REQUIRED TO ACHIEVE THE NEW CONSTRUCTION AS DESCRIBED IN ALL NEW CONSTRUCTION DOCUMENTS AT NO ADDITIONAL COST TO THE OWNER.
J	2. ALL DEMOLITION WORK SHALL BE DONE IN ACCORDANCE WITH STATE AND LOCAL REGULATIONS AND CODES. CONFORM TO ALL APPLICABLE ORDINANCES REGARDING SAFETY, ENVIRONMENTAL PROTECTION ETC. RELATED TO THE WORK.
	3. WHERE DEMOLITION IS REQUIRED, BUT NOT INDICATED FOR INSTALLATION OF NEW WORK INDICATED, DEMOLITION SHALL BE COMPLETED AS IF INDICATED, AT NO ADDITIONAL COST TO THE OWNER.
	4. ALL EXISTING CONDITIONS AND DIMENSIONS INDICATED ON DRAWINGS ARE TO BE VERIFIED IN THE FIELD PRIOR TO PROCEEDING WITH ANY WORK.
	5. ITEMS TO BE REMOVED AND DISCARDED ARE FIRST TO BE REVIEWED WITH OWNER FOR SALVAGE. ALL OTHER ITEMS ARE TO BE DISPOSED OF IN A MANNER ACCEPTABLE TO OWNER AND LOCAL JURISDICTION AND SATISFY LEED PROJECT GOALS.
	6. PROTECT THE OCCUPANTS, PREMISES & UTILITIES AND PROVIDE DUST BARRIERS SAFETY BARRICADES ETC. AS REQUIRED.
	7. CONTRACTOR TO PROTECT ALL EXISTING ITEMS TO REMAIN INCLUDING, BUT NOT LIMITED TO, ALL GLASS AND FINISHES DURING DEMOLITION AND CONSTRUCTION. REPAIR TO MATCH EXISTING WORK.
н	8. WHERE WORK IS NOTED TO BE REMOVED, ADJACENT WALL CEILINGS, FLOORS AND FINISHES SHALL BE PATCHED AND LEVELED, AS REQUIRED, TO BLEND TOGETHER TO MATCH EXISTING. ALL SELECTIVE DEMOLITION WORK ADJACENT REMAINING CONSTRUCTION MUST BE DONE IN A WORKMAN LIKE MANNER IN PREPARATION FOR THE NEW WORK.
	9. PATCH SURFACES TO REMAIN SUCH THAT COMPLETED REPAIR IS INDISTINGUISHABLE FROM ADJACENT WORK. PAINT BEYOND REPAIRED AREA TO NEXT CORNER AT FLOOR, WALL, AND CEILING.
	10. SEAL EXISTING PIPES AND DUCT INTAKES (NOTED TO REMAIN) AS REQUIRED TO AVOID SYSTEM CONTAMINATION FROM CONSTRUCTION DUST.
	11. DO NOT CUT OR REMOVE CONSTRUCTION WHICH MIGHT WEAKEN THE STRUCTURAL INTEGRITY OR STRENGTH OF THE STRUCTURAL FRAMING OR SUPPORT SYSTEMS SCHEDULED TO REMAIN.
	12. ALL LIFE SAFETY SYSTEMS SHALL REMAIN ACTIVE DURING DEMOLITION AND CONSTRUCTION OPERATIONS. THE BUILDING SHALL BE MAINTAINED AND LEFT IN A SAFE CONDITION. ALL HAZARDS AND UNSAFE CONDITIONS SHALL BE IDENTIFIED AND CONTRACTOR SHALL PROVIDE PROPER NOTIFICATION TO SECURE SAFETY.
	13. THIS IS AN OCCUPIED SITE, THE BUILDING SHALL BE LEFT BROOM CLEAN AND DRY AT THE END OF EACH WORK DAY.
G	14. RESTORE ANY SURFACES OF FINISHES WHICH ARE SCRATCHED, MARRED OR OTHERWISE DAMAGED BE THE INSTALLATION, MOVEMENT OR REMOVAL OF ALL EQUIPMENT ASSOCIATED WITH DEMOLITION PROCEDURES. (EG. SCAFFOLDING, CONTAINERS, ETC.).
	15. CONTRACTOR SHALL REMOVE ALL MISC. CASEWORK ALONG WITH ASSOCIATED PLUMBING, GAS, POWER AND AIR, FIXTURES AND LINES BASES, SUPPORTS, AND ALL ABANDONED FASTENERS IN THEIR ENTIRETY. ALL CASEWORK IS TO BE CAREFULLY REMOVED TO ALLOW THE OWNER TO SALVAGE ANY REUSABLE EQUIPMENT. SEE MECHANICAL / ELECTRICAL / PLUMBING DOCUMENTS FOR RELATED WORK.
	16. REMOVE ALL DEMOLITION MATERIAL AND DEBRIS FROM SITE.
	17. WHERE EXISTING MASONRY ABUTS INTO EXISTING MASONRY AND ONE WALL IS DEMOLISHED, THE CONTRACTOR WILL REPAIR THE INTERSECTION BY TOOTHING-IN NEW MASONRY TO MATCH EXISTING.
	18. CONTRACTOR SHALL REMOVE ABANDONED PLUMBING FIXTURES, CAP DRAINS AND RELATED PIPING,
	AND CAP ALL UNUSED PIPING BEHIND WALL, ABANDONED FLOOR DRAINS TO BE CAPPED AND SEALED, U.N.O. SEE MECHANICAL / ELECTRICAL / PLUMBING DOCUMENTS.
	AND CAP ALL UNUSED PIPING BEHIND WALL, ABANDONED FLOOR DRAINS TO BE CAPPED AND SEALED,
F	AND CAP ALL UNUSED PIPING BEHIND WALL, ABANDONED FLOOR DRAINS TO BE CAPPED AND SEALED, U.N.O. SEE MECHANICAL / ELECTRICAL / PLUMBING DOCUMENTS. 19. DO NOT REMOVE EXISTING COLUMNS WITHOUT CROSS REFERENCING STRUCTURAL PLANS. IF A
F	AND CAP ALL UNUSED PIPING BEHIND WALL, ABANDONED FLOOR DRAINS TO BE CAPPED AND SEALED, U.N.O. SEE MECHANICAL / ELECTRICAL / PLUMBING DOCUMENTS. 19. DO NOT REMOVE EXISTING COLUMNS WITHOUT CROSS REFERENCING STRUCTURAL PLANS. IF A
F	AND CAP ALL UNUSED PIPING BEHIND WALL, ABANDONED FLOOR DRAINS TO BE CAPPED AND SEALED, U.N.O. SEE MECHANICAL / ELECTRICAL / PLUMBING DOCUMENTS. 19. DO NOT REMOVE EXISTING COLUMNS WITHOUT CROSS REFERENCING STRUCTURAL PLANS. IF A
F	AND CAP ALL UNUSED PIPING BEHIND WALL, ABANDONED FLOOR DRAINS TO BE CAPPED AND SEALED, U.N.O. SEE MECHANICAL / ELECTRICAL / PLUMBING DOCUMENTS. 19. DO NOT REMOVE EXISTING COLUMNS WITHOUT CROSS REFERENCING STRUCTURAL PLANS. IF A
F	AND CAP ALL UNUSED PIPING BEHIND WALL, ABANDONED FLOOR DRAINS TO BE CAPPED AND SEALED, U.N.O. SEE MECHANICAL / ELECTRICAL / PLUMBING DOCUMENTS. 19. DO NOT REMOVE EXISTING COLUMNS WITHOUT CROSS REFERENCING STRUCTURAL PLANS. IF A


2

3

4

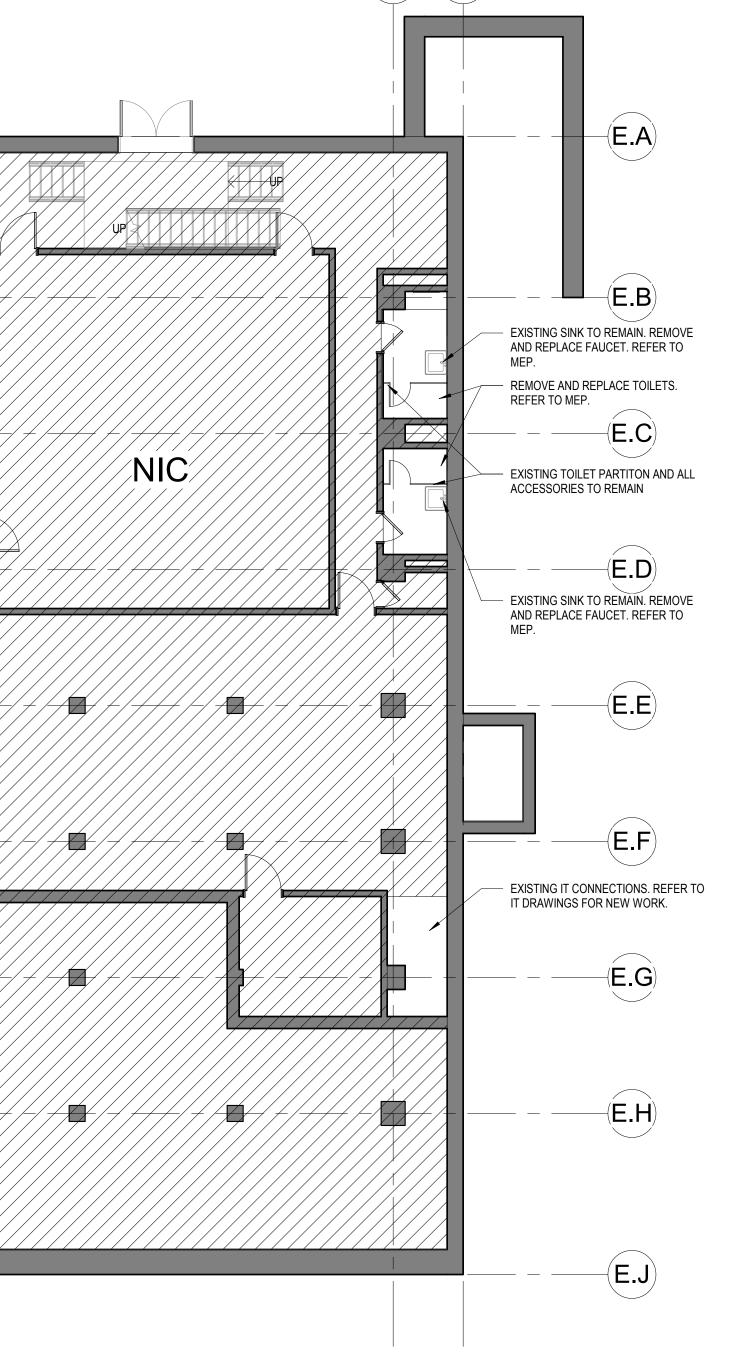
5

6

DEMOLITION PLAN - CHAPEL

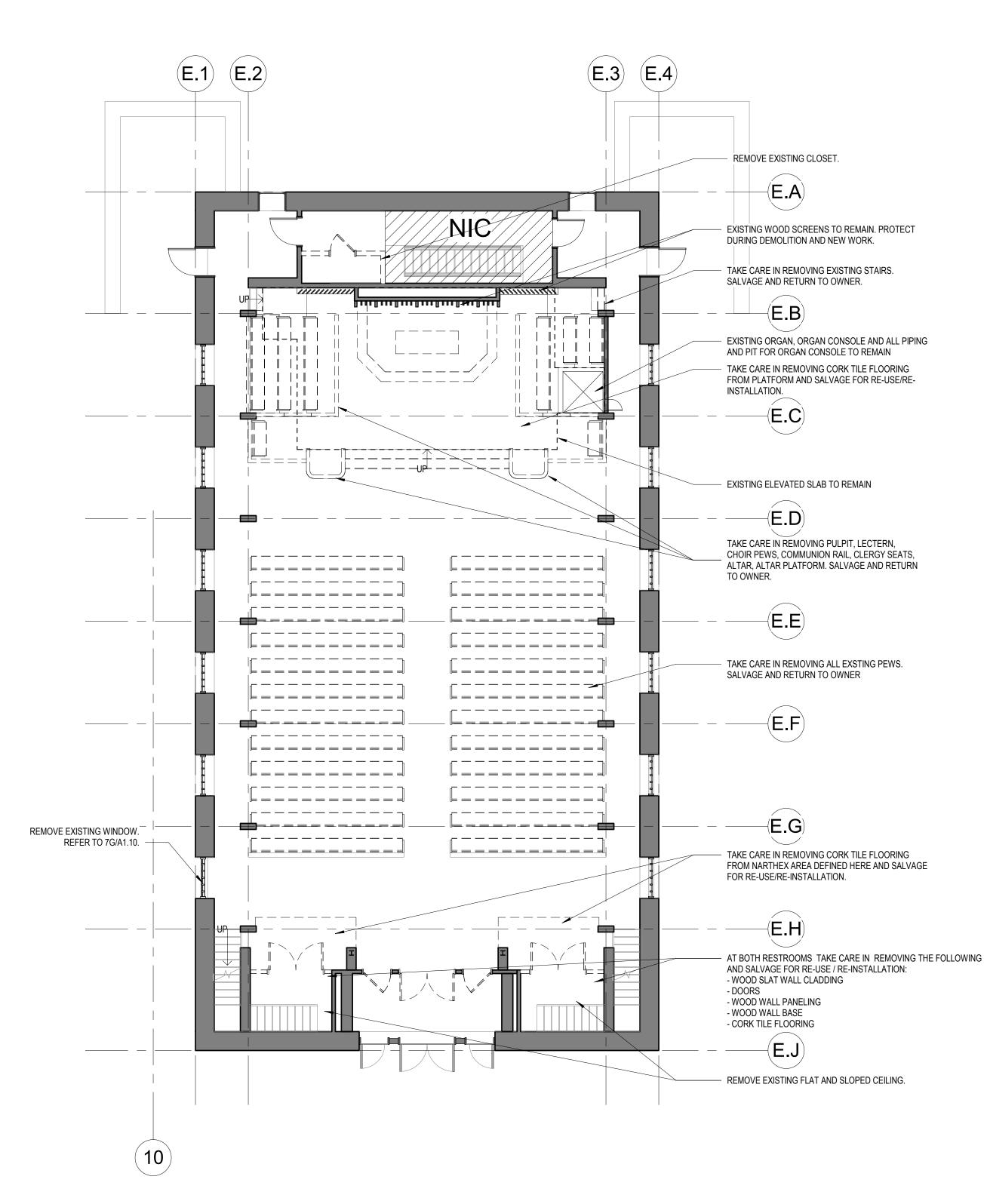
4

3A BASEMENT 1/8" = 1'-0"


3

(E.1) (E.2)

7A <u>DEMOLITION - LEVEL 1</u> 1/8" = 1'-0"

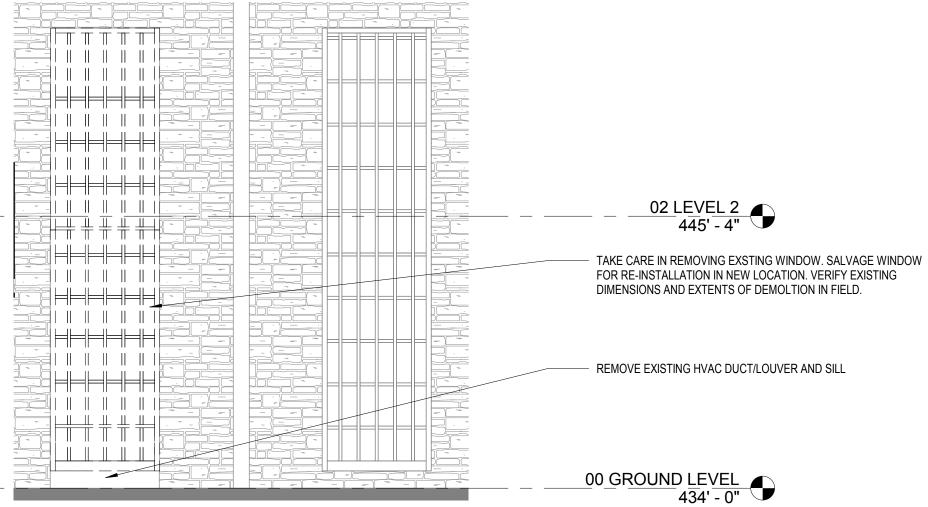

7

6

5

(E.3) (E.4)

9


7G WINDOW 1/4" = 1'-0"

_____ ___

7

8

9

10

11

11

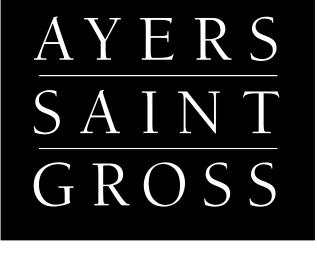
10

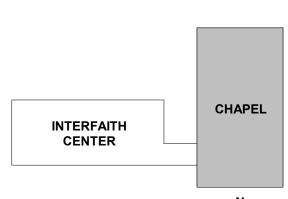
© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

SELECTIVE DEMOLITION PLANS

DRAWING NAME


DOCUMENTS


PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: ASG

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

REV. #	DESCRIPTION	DATE
	KEY PLAN	

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

KIBART

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com COMMISSIONING

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY

CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

www.morabitoconsultants.com

300 EAST JOPPA ROAD, SUITE 200

STRUCTURAL ENGINEER

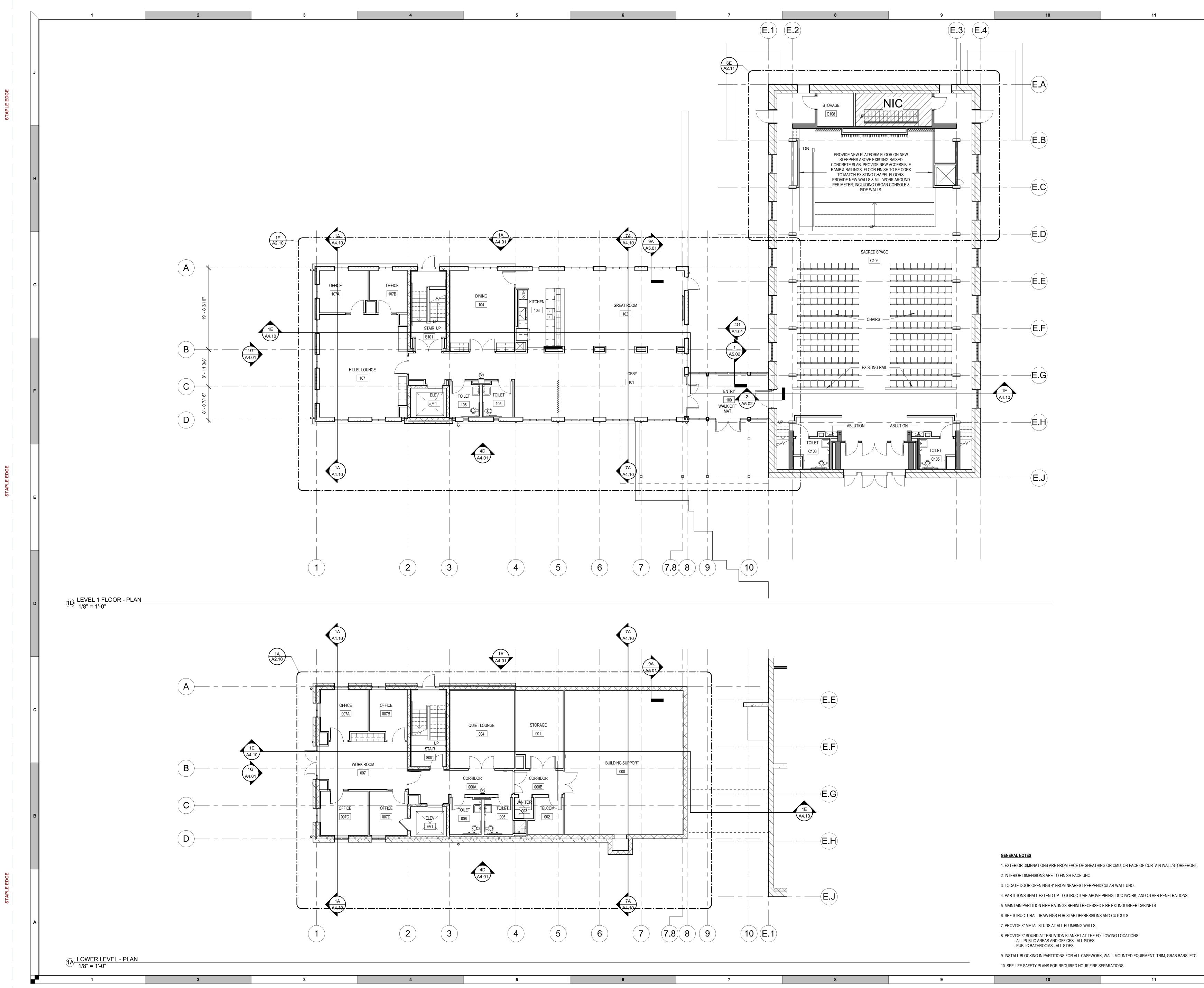
MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

www.asg-architects.com

410.347.8500

BALTIMORE, MD 21230 1306 CONCOURSE DRIVE, SUITE 100

M/E/P & FIRE PROTECTION ENGINEER


ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

GOLDSMITH INTERFAITH CENTER

> GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

> > PROJECT TEAM

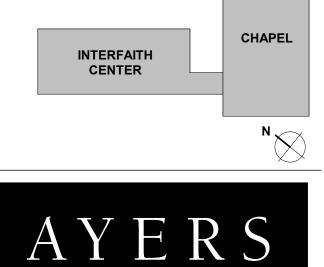
-college-

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

FLOOR PLAN - LOWER LEVEL & LEVEL 1

DOCUMENTS DRAWING NAME


PROJECT DESIGN PHASE **50% CONSTRUCTION**

ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: ASG

DRAWING INFORMATION

NOT FOR CONSTRUCTION

SAINT GROSS **ARCHITECTS + PLANNERS**

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

410.712.0390 www.spexsys.com COMMISSIONING

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com **CIVIL ENGINEER**

WBCM 300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286 410.512.4500

www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

www.muellerassoc.com STRUCTURAL ENGINEER

GOLDSMITH INTERFAITH CENTER GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS

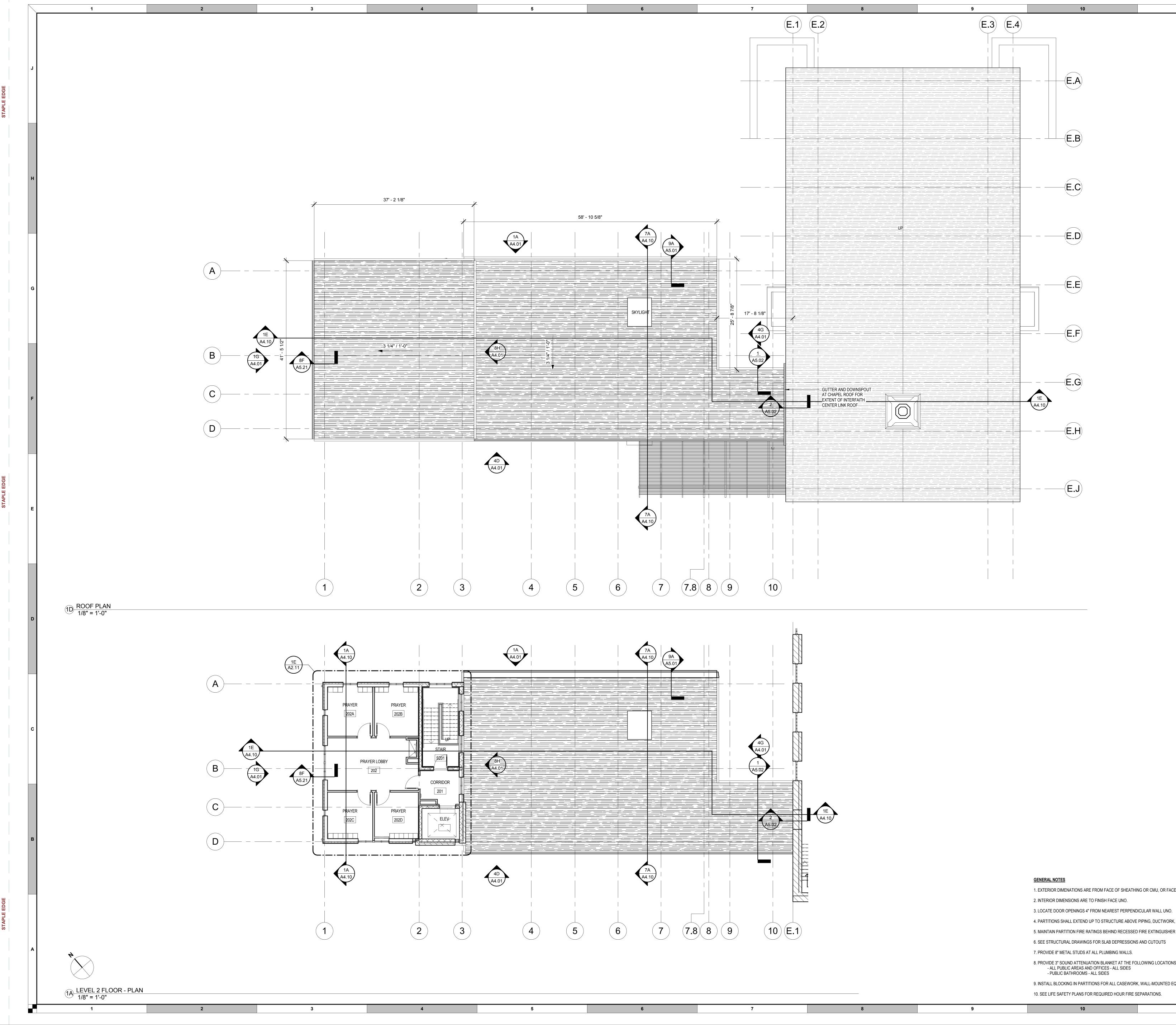
1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

410.347.8500

www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER


MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500

PROJECT INFORMATION

GOUCHER

-college-

1. EXTERIOR DIMENATIONS ARE FROM FACE OF SHEATHING OR CMU, OR FACE OF CURTAIN WALL/STOREFRONT.

4. PARTITIONS SHALL EXTEND UP TO STRUCTURE ABOVE PIPING, DUCTWORK, AND OTHER PENETRATIONS.

5. MAINTAIN PARTITION FIRE RATINGS BEHIND RECESSED FIRE EXTINGUISHER CABINETS

8. PROVIDE 3" SOUND ATTENUATION BLANKET AT THE FOLLOWING LOCATIONS

9. INSTALL BLOCKING IN PARTITIONS FOR ALL CASEWORK, WALL-MOUNTED EQUIPMENT, TRIM, GRAB BARS, ETC.

11

11

GOUCHER

GOLDSMITH INTERFAITH CENTER

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

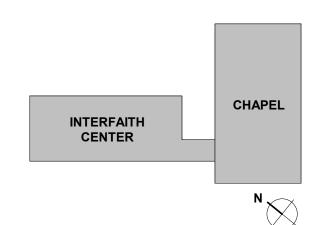
PROJECT TEAM

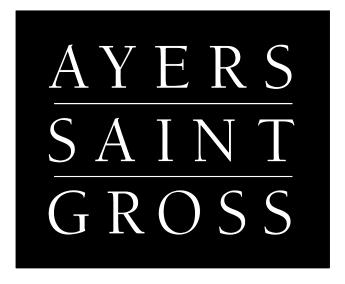
ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

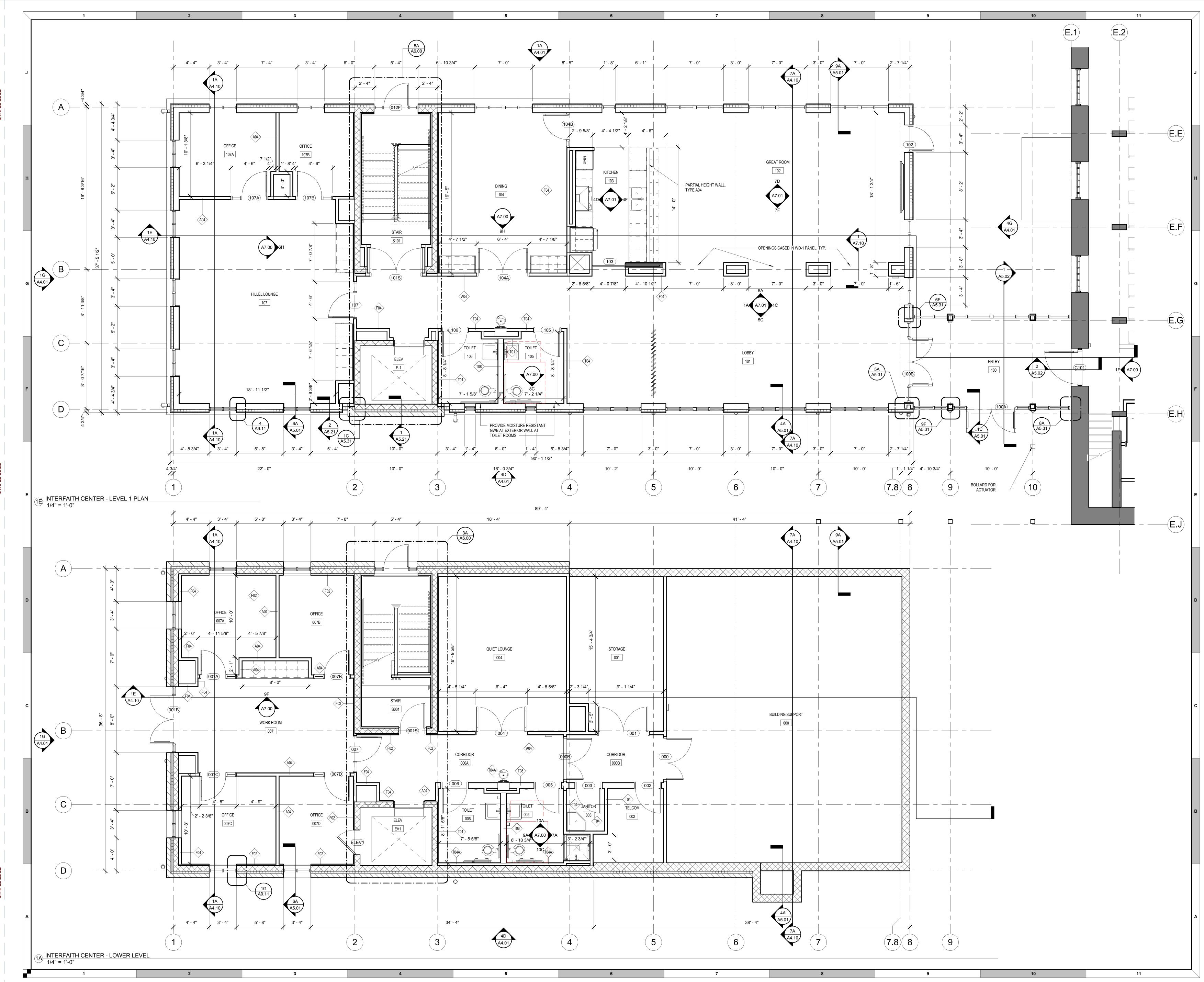

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com


IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

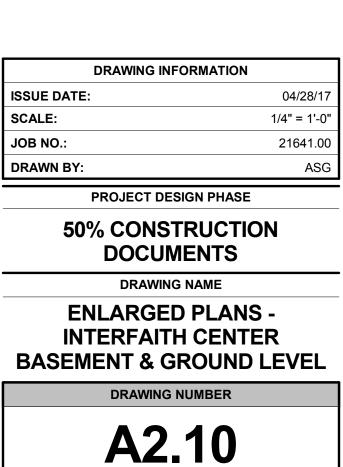
COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

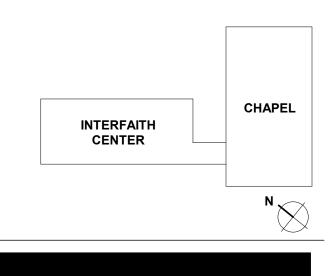


ARCHITECTS + PLANNERS


NOT FOR CONSTRUCTION

DRAWING INFORM	ATION	
ISSUE DATE:	04/28/17	
SCALE:	As indicated	
JOB NO.:	21641.00	
DRAWN BY:	ASG	
PROJECT DESIGN	PHASE	
50% CONSTRUCTION DOCUMENTS		
FLOOR PLAN - LEVEL 2 & ROOF		
DRAWING NUMBER		
A2.01		

© COPYRIGHT AYERS SAINT GROSS, 2017



NOT FOR CONSTRUCTION

AYERS SAINT GROSS **ARCHITECTS + PLANNERS**

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

HANOVER, MD 21076 410.712.0390 www.spexsys.com

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

STRUCTURAL ENGINEER SPARKS, MD 21152 410.467.2377

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com MORABITO CONSULTANTS

1306 CONCOURSE DRIVE, SUITE 100

952 RIDGEBROOK ROAD, SUITE 1700

www.morabitoconsultants.com **CIVIL ENGINEER** WBCM 300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

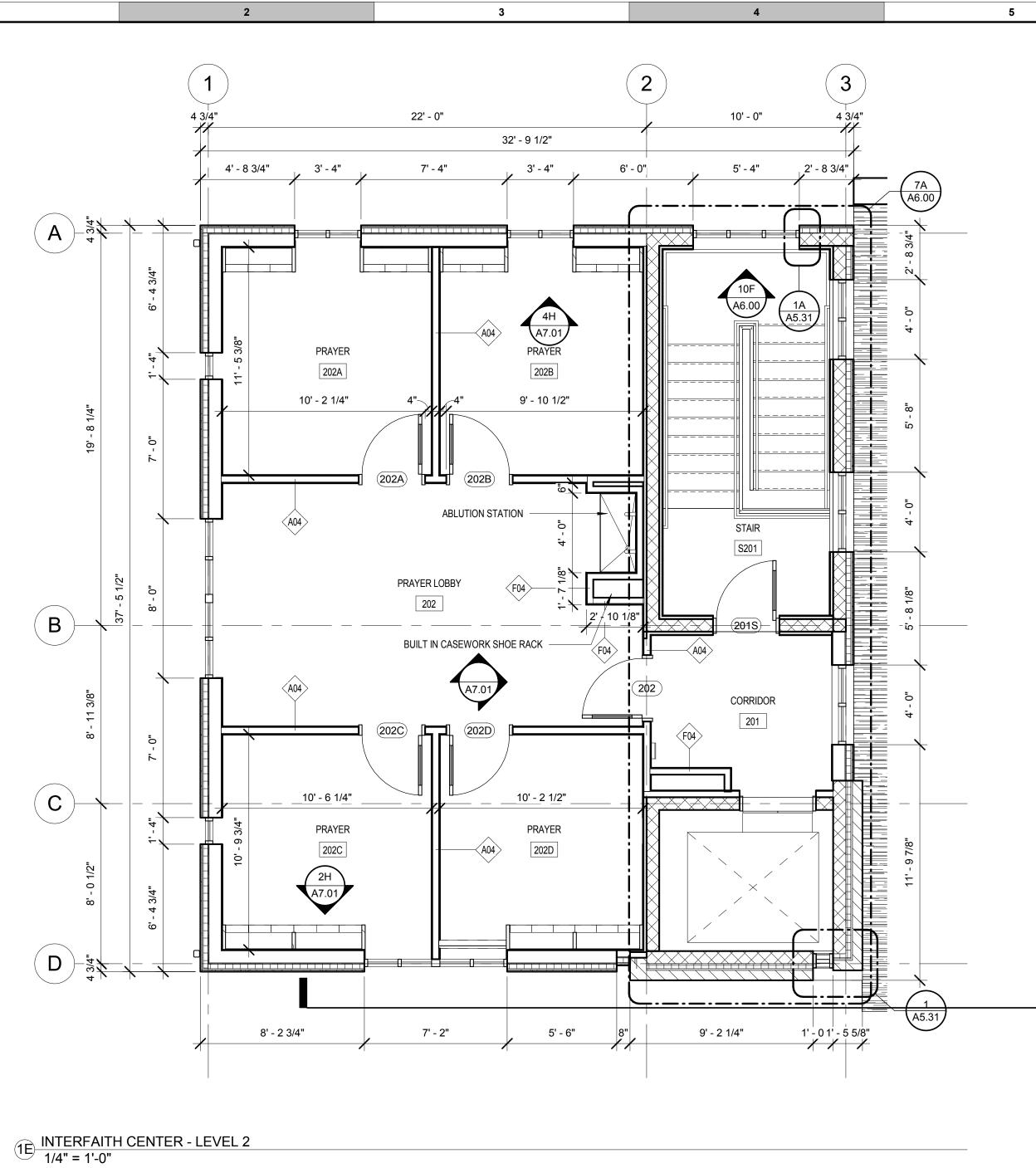
M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

—college—

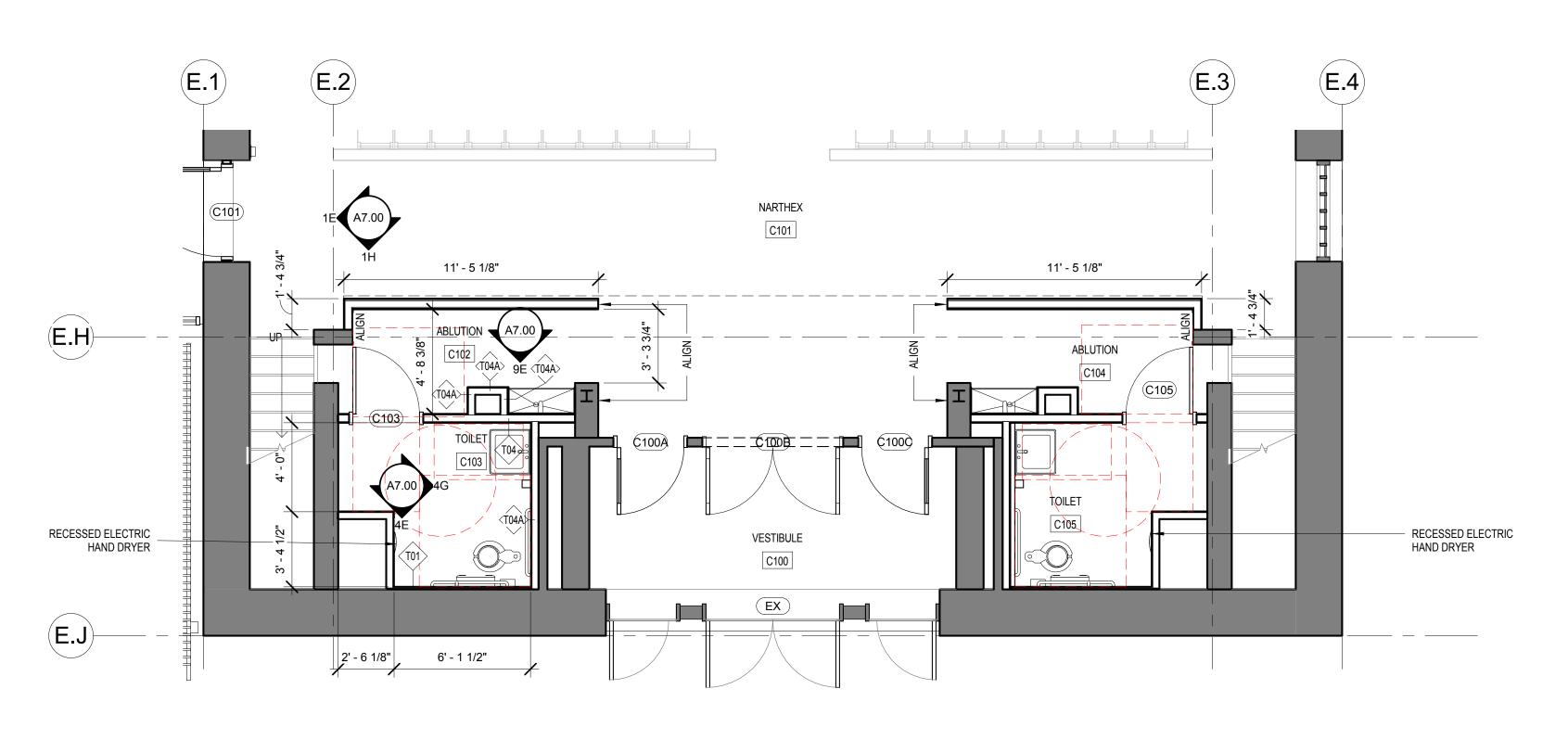
GOLDSMITH INTERFAITH CENTER

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204


PROJECT TEAM

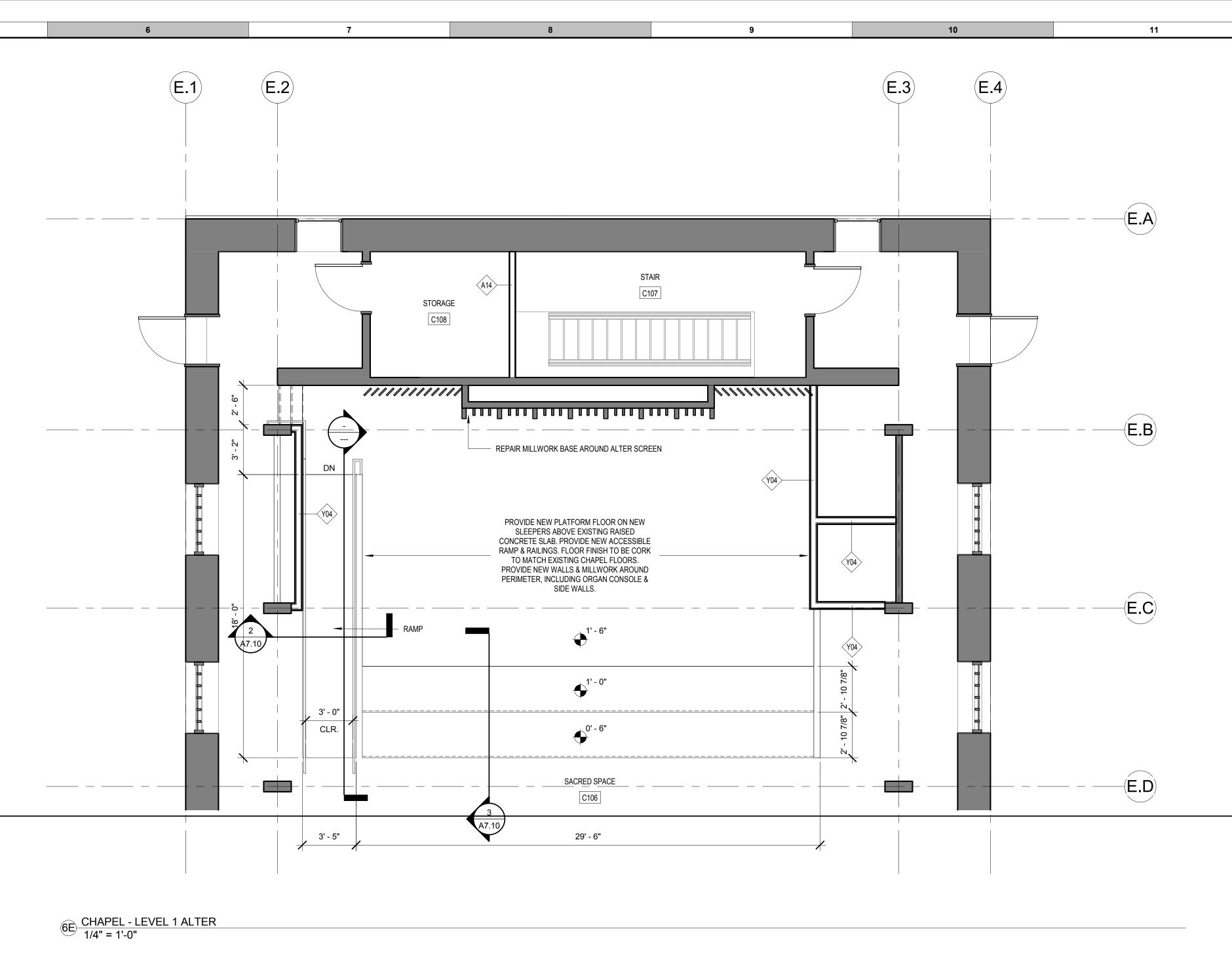
ARCHITECT

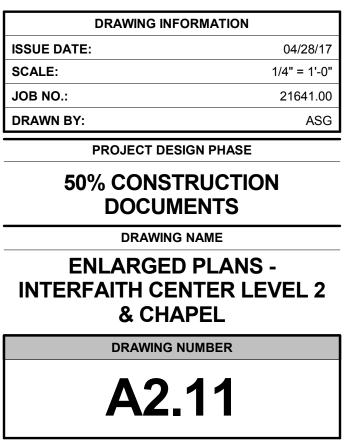
GOUCHER

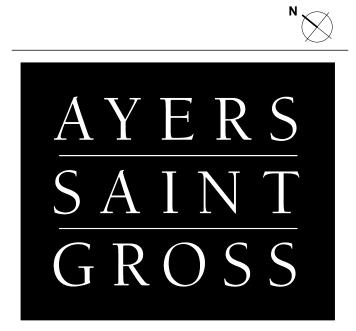

4

5

6


7


9


10

11

ARCHITECTS + PLANNERS

NOT FOR

CONSTRUCTION

CHAPEL INTERFAITH CENTER

REVISIONS REV. # DESCRIPTION DATE KEY PLAN

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com COMMISSIONING

IT / AV / SECURITY

www.asg-architects.com

BALTIMORE, MD 21230 410.347.8500

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

STRUCTURAL ENGINEER SPARKS, MD 21152 410.467.2377

410.646.4500 www.muellerassoc.com MORABITO CONSULTANTS

MUELLER ASSOCIATES LINTHICUM, MD 21090

1306 CONCOURSE DRIVE, SUITE 100

952 RIDGEBROOK ROAD, SUITE 1700

www.morabitoconsultants.com CIVIL ENGINEER

300 EAST JOPPA ROAD, SUITE 200

M/E/P & FIRE PROTECTION ENGINEER

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500

www.asg-architects.com

GOUCHER

—college—

GOLDSMITH INTERFAITH CENTER

GOUCHER COLLEGE


1021 DULANEY VALLEY RD BALTIMORE MD 21204

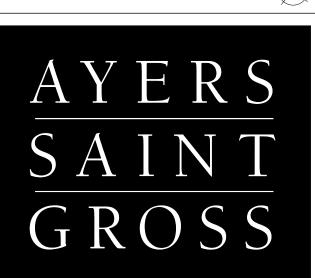
	ght of ceilings shall be measured from top of slab to finish face of GWB or face of ceiling grid as indicated on the Reflected Ceiling Plan, N.		
	ight fixtures are to be installed according to the Architectural Reflected Ceiling Plan. Architect to review ceiling layout including bulkheads grid prior to installation.		
	Light fixture types, quantities and locations only are noted on Architectural Reflected Ceiling Plans. Specifications, switching, exit lights, emergency lighting, life safety equipment, and circuiting are noted on Engineering documents.		
fi d	nensioned light fixtures are from finished face of partitions to centerline of fixture and from centerline of fixture to centerline of fixture. All ures shall be installed in center of ceiling tile unless noted otherwise. Any discrepancies with light fixtures, switches, thermostats, or users as to location between architectural and engineering drawings or between the drawings and existing field conditions shall be clarified in the Architect before proceeding with installation.		
	sting wood slat ceiling and square recessed light fixtures at underside of choir loft in Chapel to remain. Patch and repair the ceiling where nolition occurred to match existing.		
P	vide and install manual recessed roller shades at all windows, UON.		
P	vide and install motorized recessed roller shades at windows in double height Great Room.		
P	vide and install K-13 Spray On Acoustic Treatment to underside of structural deck thoughout the Lower Level.		
	LIGHT FIXTURE LEGEND		
	6" SQ. RECESSED LED DOWNLIGHT		
C	DECORATIVE LED SCONCE - ALLOW \$300 PER FIXTURE		
	2X2 RECESSED DIRECT/INDIRECT LED		
ł	DECORATIVE VANITY SCONCE		
	8'-0" UTILITY LINEAR LED PENDANT FIXTURE		
	EXISTING CHAPEL PENDANT FIXTURE - RELAMP WITH LED		

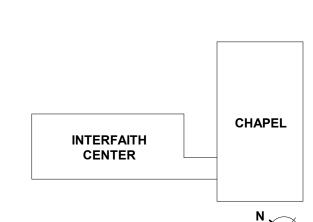
© COPYRIGHT AYERS SAINT GROSS, 2017

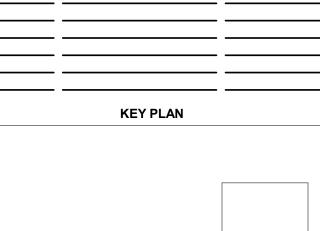
11

REFLECTED CEILING PLAN -LOWER LEVEL & LEVEL 1

DRAWING NAME


DOCUMENTS


PROJECT DESIGN PHASE **50% CONSTRUCTION**


DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: ASG

ARCHITECTS + PLANNERS

www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

REVISIONS

DATE

REV. # DESCRIPTION

TOWSON, MD 21204 410.494.1111

901 DULANEY VALLEY ROAD, SUITE 301

KIBART

COMMISSIONING

HANOVER, MD 21076 410.712.0390 www.spexsys.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS

952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 **CIVIL ENGINEER**

www.morabitoconsultants.com

300 EAST JOPPA ROAD, SUITE 200

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER

MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100

LINTHICUM, MD 21090

410.646.4500 www.muellerassoc.com

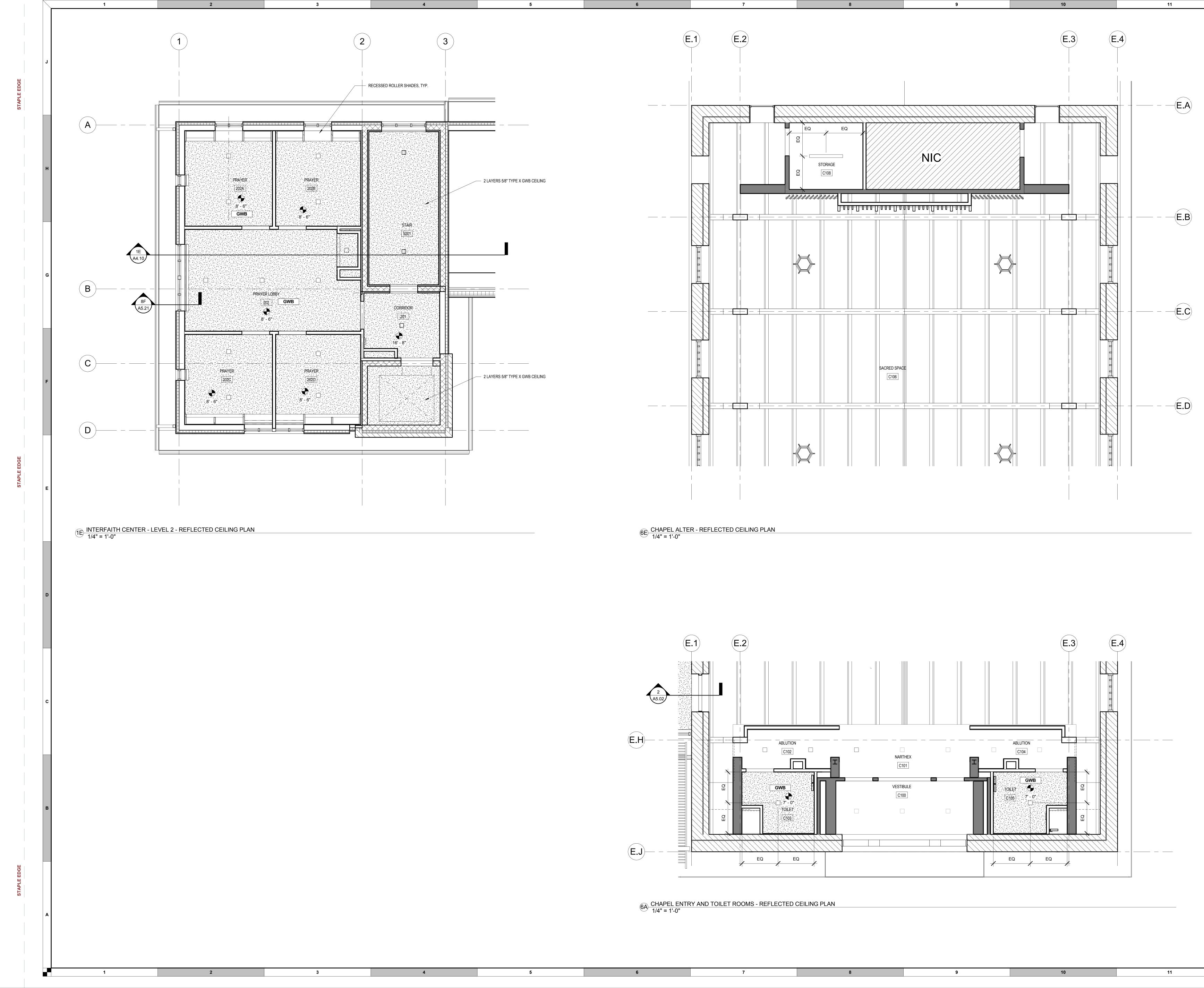
STRUCTURAL ENGINEER MORABITO CONSULTANTS

1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS

CENTER GOUCHER COLLEGE


GOUCHER

-college-

GOLDSMITH INTERFAITH

PROJECT INFORMATION

11

GOUCHER —college—

GOLDSMITH INTERFAITH CENTER

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

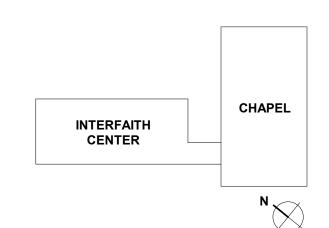
PROJECT TEAM

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com


LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

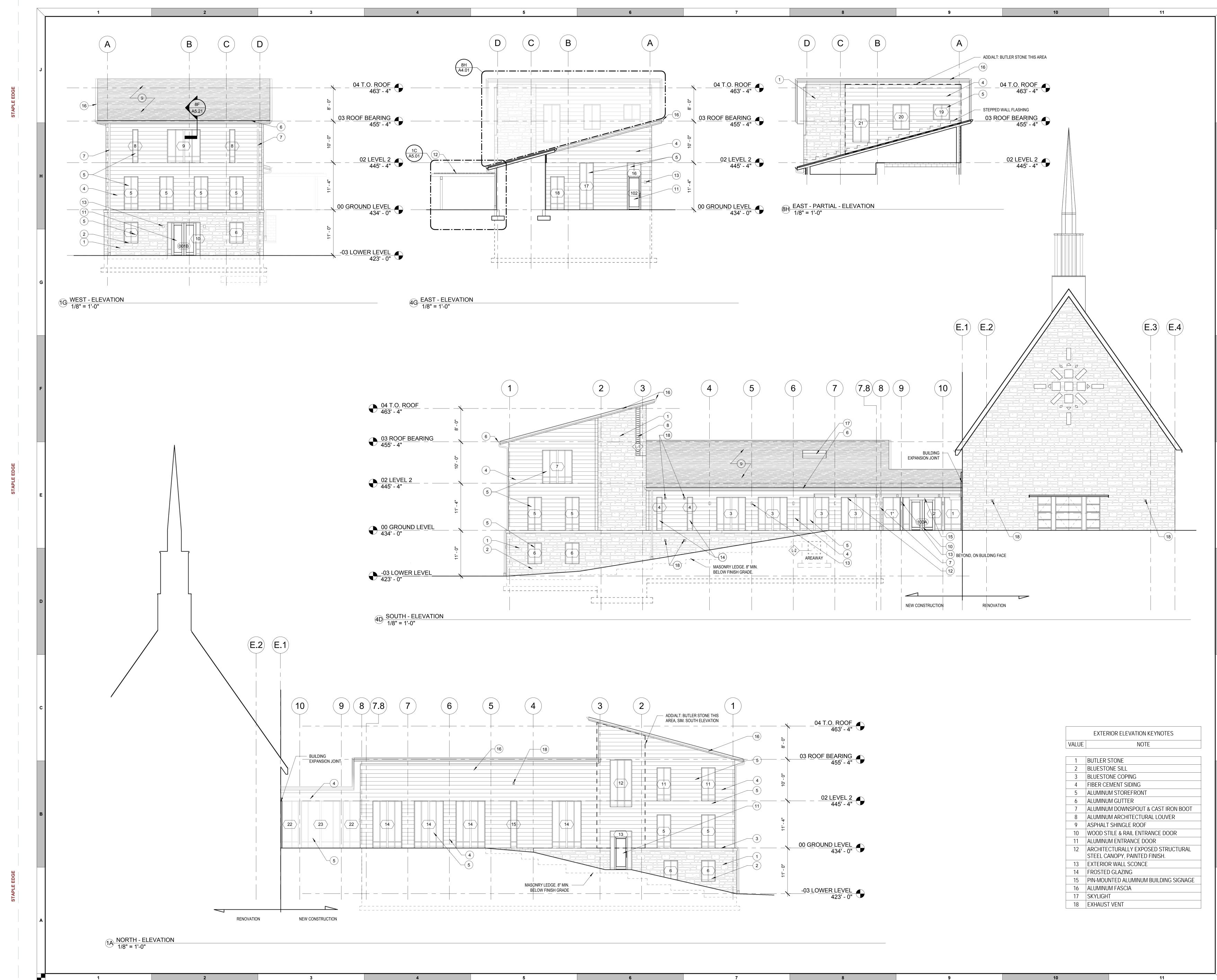
CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

REVISIONS	
DESCRIPTION	DATE

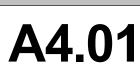
ARCHITECTS + PLANNERS

NOT FOR CONSTRUCTION

DRAWING INFORMATION			
ISSUE DATE:	04/28/17		
SCALE:	1/4" = 1'-0"		
JOB NO.:	21641.00		
DRAWN BY:	ASG		
PROJECT DESIGN PHASE			
50% CONSTRUCTION DOCUMENTS			


DRAWING NAME

REFLECTED CEILING PLAN -LEVEL 2 & CHAPEL


DRAWING NUMBER

© COPYRIGHT AYERS SAINT GROSS, 2017

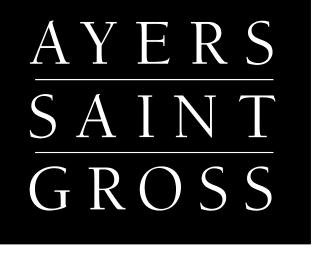
© COPYRIGHT AYERS SAINT GROSS, 2017

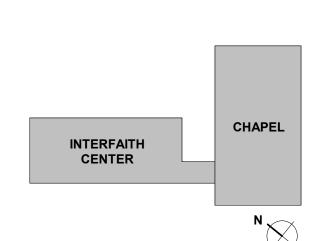
BUILDING ELEVATIONS

DRAWING NUMBER

DRAWING NAME

PROJECT DESIGN PHASE DOCUMENTS


50% CONSTRUCTION


ISSUE DATE: 04/28/17 SCALE: 1/8" = 1'-0' JOB NO.: 21641.00 DRAWN BY: ASG

DRAWING INFORMATION

NOT FOR CONSTRUCTION

REVISIONS			
REV. #	DESCRIPTION	DATE	
		·	
		·	
	KEY PLAN		

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

KIBART

COMMISSIONING

HANOVER, MD 21076 410.712.0390 www.spexsys.com

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

410.467.2377 **CIVIL ENGINEER** WBCM

www.morabitoconsultants.com

SPARKS, MD 21152

300 EAST JOPPA ROAD, SUITE 200

STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

www.muellerassoc.com

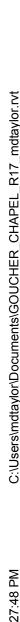
www.asg-architects.com MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500

BALTIMORE, MD 21230 410.347.8500

M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100


GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM

GOUCHER

-college-

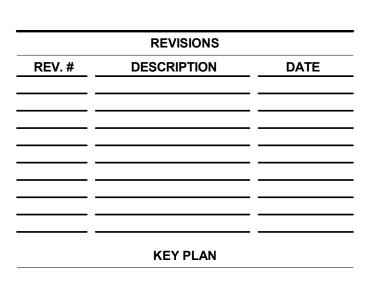
GOLDSMITH INTERFAITH

CENTER

BUILDING SECTIONS

DRAWING NUMBER

DRAWING NAME


PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS

DRAWING INFORMATION ISSUE DATE: 04/28/17 1/4" = 1'-0' SCALE: JOB NO.: 21641.00 DRAWN BY: ASG

NOT FOR CONSTRUCTION

CHAPEL INTERFAITH CENTER

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING

410.712.0390 www.spexsys.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

410.347.8500 www.asg-architects.com IT / AV / SECURITY

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

STRUCTURAL ENGINEER SPARKS, MD 21152 410.467.2377

MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700 www.morabitoconsultants.com

CIVIL ENGINEER WBCM

www.muellerassoc.com

410.347.8500 www.asg-architects.com MUELLER ASSOCIATES

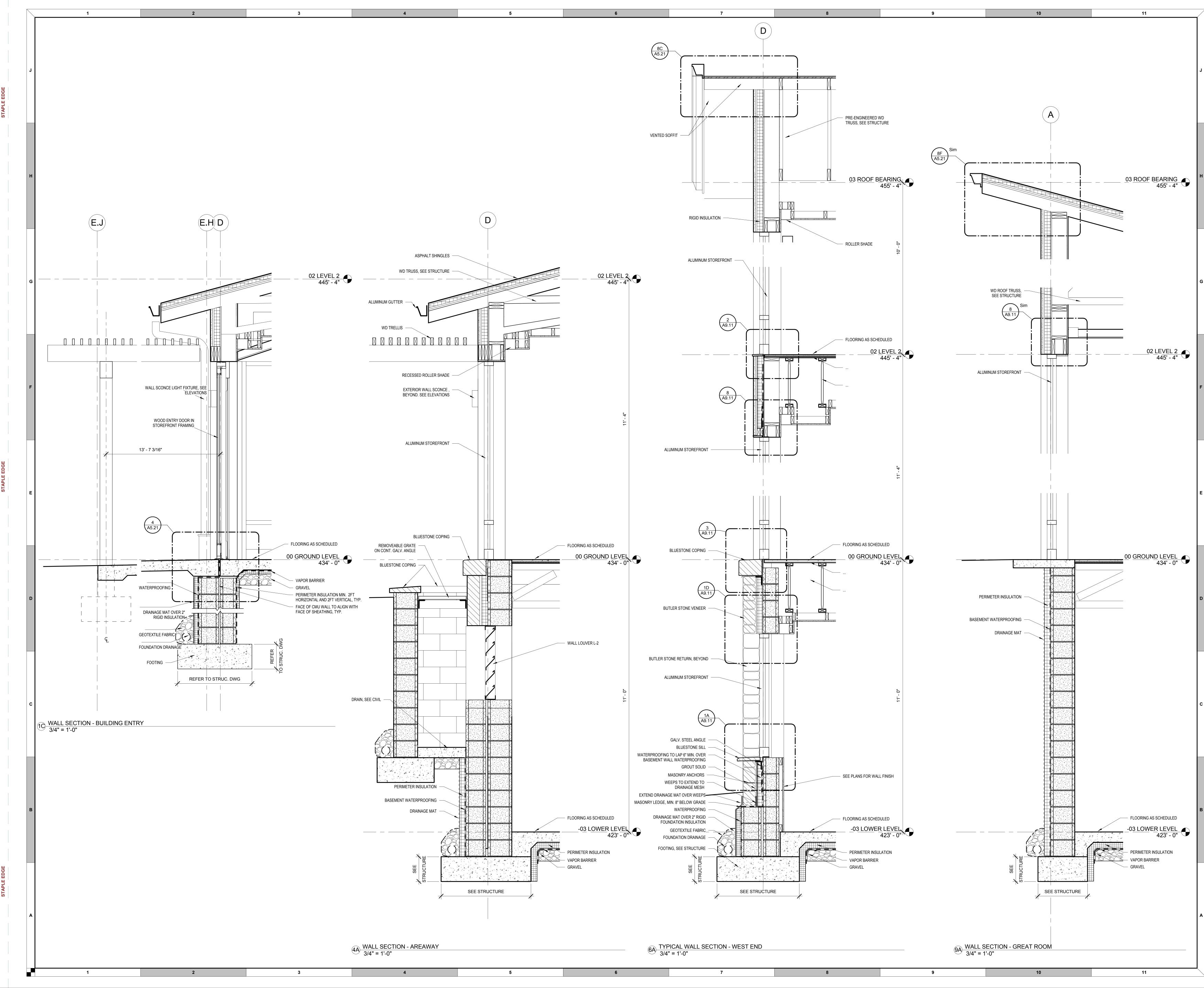
M/E/P & FIRE PROTECTION ENGINEER

ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

LINTHICUM, MD 21090 410.646.4500

1306 CONCOURSE DRIVE, SUITE 100


GOLDSMITH INTERFAITH CENTER

> GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

> > PROJECT TEAM

GOUCHER

-college-

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

WALL SECTIONS

DRAWING NAME
DOCUMENTS

50% CONSTRUCTION

DRAWING INFORMATION			
ISSUE DATE:	04/28/17		
SCALE:	3/4" = 1'-0"		
JOB NO.:	21641.00		
DRAWN BY:	ASG		
PROJECT DESIGN PHASE			

NOT FOR CONSTRUCTION

INTERFAITH CENTER	CHAPEL
	N N

EV. #	DESCRIPTION	DATE
	KEY PLAN	
	RET PLAN	

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246 www.koffel.com

KIBART

COMMISSIONING

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

SPEXSYS

IT / AV / SECURITY

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

410.467.2377 CIVIL ENGINEER WBCM

SPARKS, MD 21152 www.morabitoconsultants.com 300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

STRUCTURAL ENGINEER MORABITO CONSULTANTS

410.347.8500 www.asg-architects.com MUELLER ASSOCIATES

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 M/E/P & FIRE PROTECTION ENGINEER

1306 CONCOURSE DRIVE, SUITE 100

LINTHICUM, MD 21090 410.646.4500

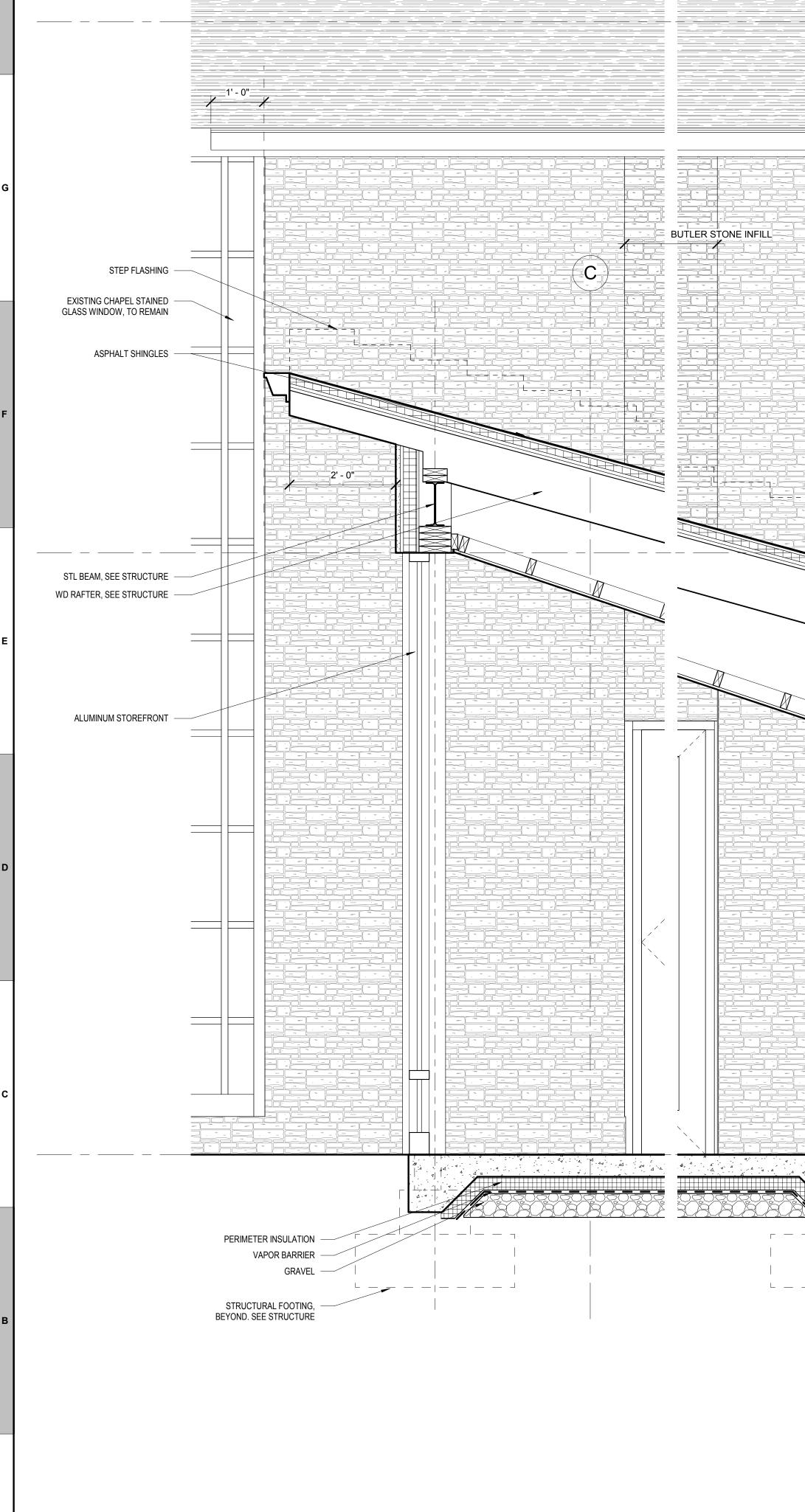
www.muellerassoc.com

952 RIDGEBROOK ROAD, SUITE 1700

1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM ARCHITECT

CENTER

GOLDSMITH INTERFAITH


GOUCHER COLLEGE

GOUCHER

WALL SECTION - VESTIBULE HIGH SIDE

1

3/4" = 1'-0"

2

3

2

3

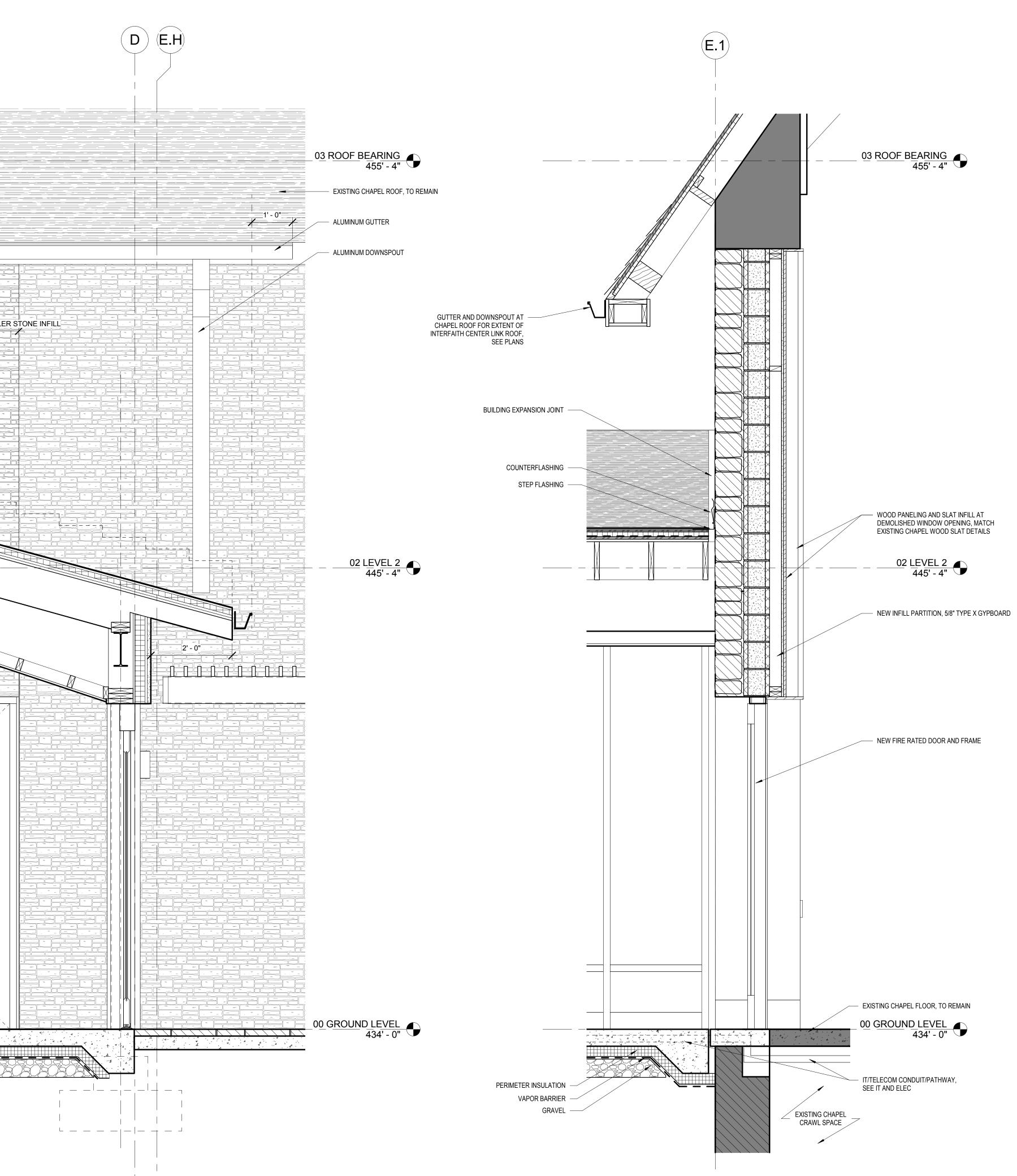
4

5

5

6

4


6

7

8

9

1

2 WALL SECTION - CONNECTION TO CHAPEL 3/4" = 1'-0"

7

11

10

10

9

11

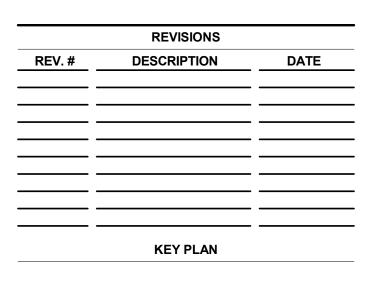
© COPYRIGHT AYERS SAINT GROSS, 2017

WALL SECTIONS

DRAWING NUMBER

DRAWING NAME

DOCUMENTS


50% CONSTRUCTION

DRAWING INFORMATION			
ISSUE DATE:	04/28/17		
SCALE:	3/4" = 1'-0"		
JOB NO.:	21641.00		
DRAWN BY:	ASG		
PROJECT DESIGN PHASE			

NOT FOR CONSTRUCTION

INTERFAITH CENTER	CHAPEL
	N

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.712.0390 www.spexsys.com

GOLDSMITH INTERFAITH CENTER

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

PROJECT TEAM ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100

LINTHICUM, MD 21090 410.646.4500

www.muellerassoc.com STRUCTURAL ENGINEER

MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152

410.467.2377

www.morabitoconsultants.com

CIVIL ENGINEER WBCM

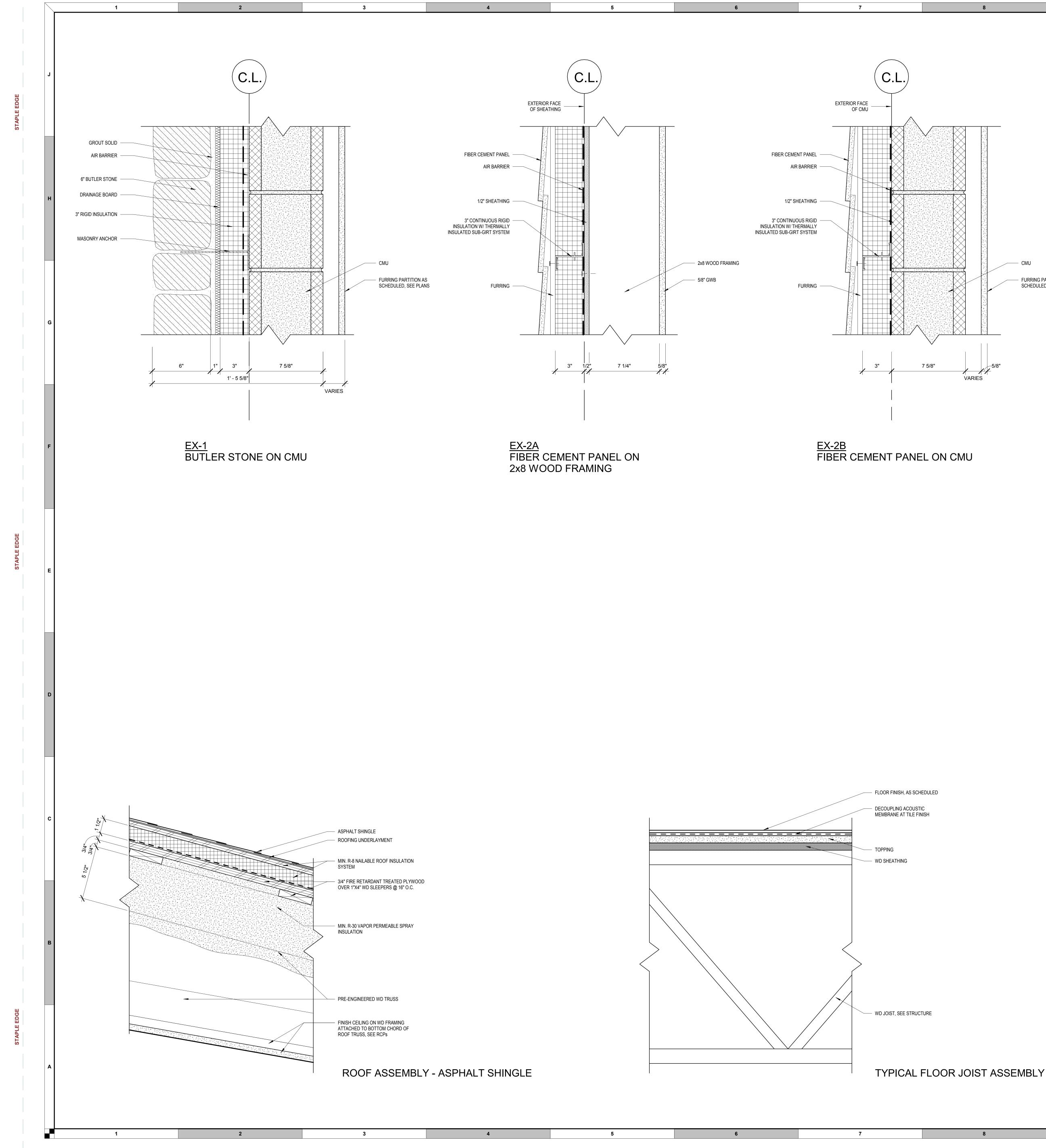
300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500

www.wbcm.com

LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500 www.asg-architects.com


IT / AV / SECURITY SPEXSYS HANOVER, MD 21076

7257 PARKWAY DRIVE, SUITE 260

410.750.2246 www.koffel.com

PROJECT INFORMATION

GOUCHER

FURRING PARTITION AS

- CMU

9

10

11

SCHEDULED, SEE PLANS

9

© COPYRIGHT AYERS SAINT GROSS, 2017

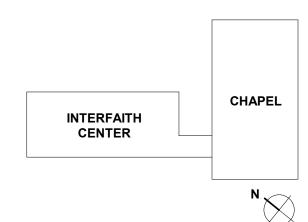
11

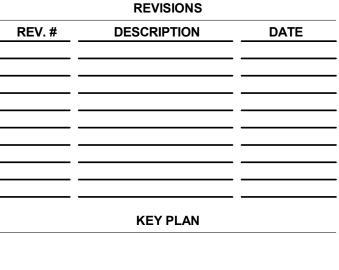
10

DRAWING NUMBER

EXTERIOR ASSEMBLIES

DRAWING NAME


DOCUMENTS


PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: 3" = 1'-0" JOB NO.: 21641.00 DRAWN BY: ASG

NOT FOR CONSTRUCTION

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

410.712.0390 www.spexsys.com COMMISSIONING

1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152

410.467.2377

www.morabitoconsultants.com CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200

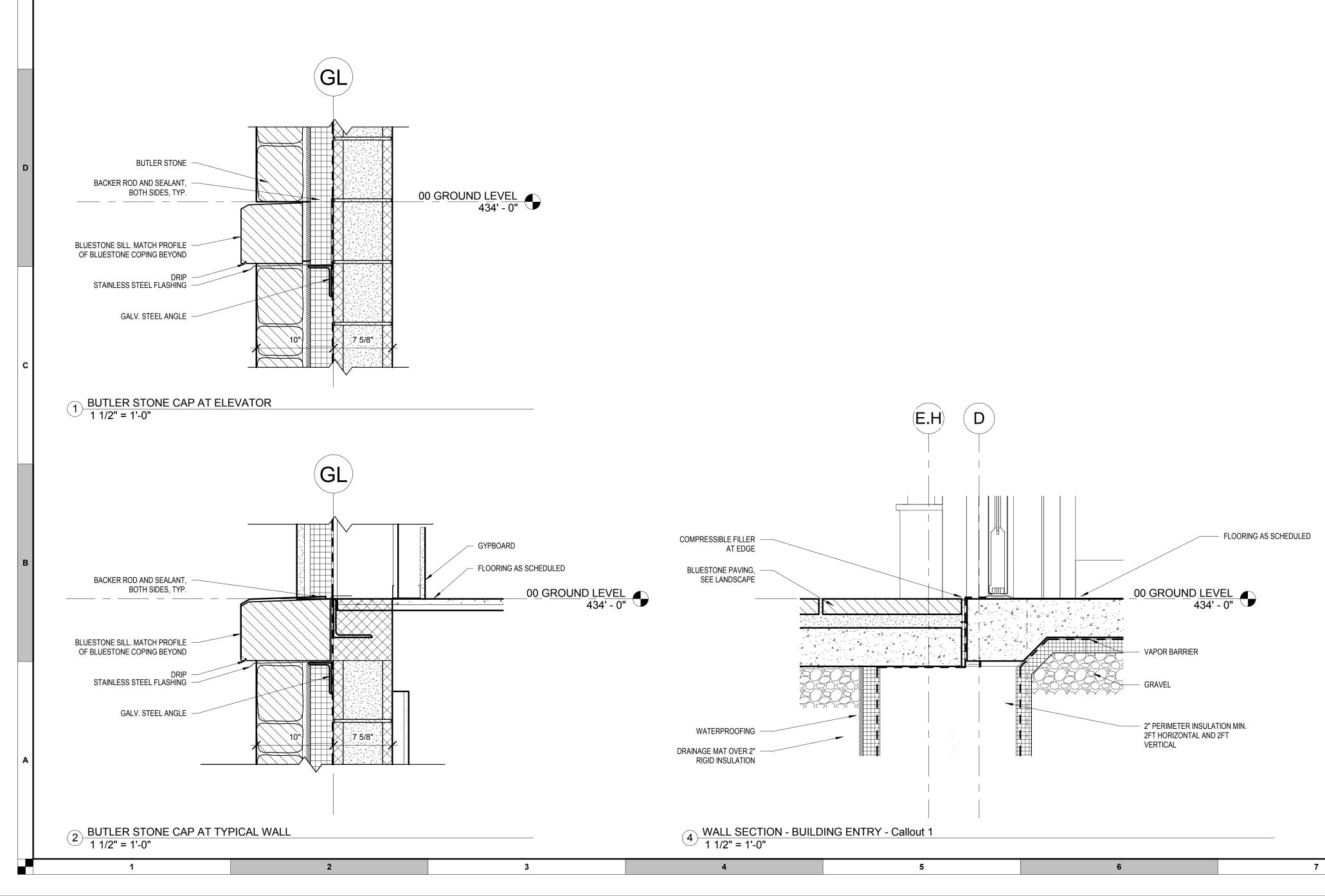
BALTIMORE, MD 21286

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

410.347.8500 www.asg-architects.com

BALTIMORE, MD 21230


IT / AV / SECURITY

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

GOUCHER -college-

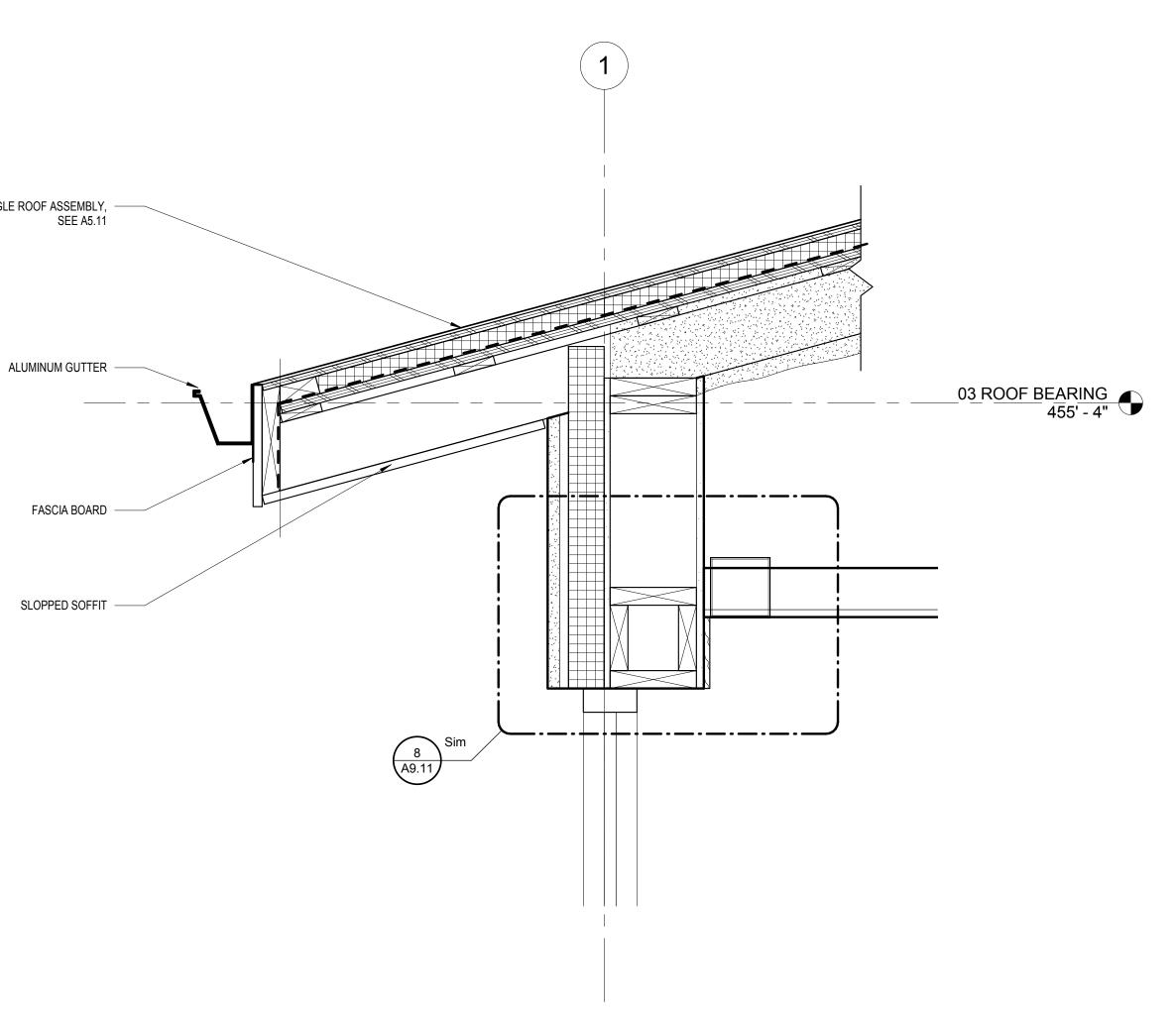
GOLDSMITH INTERFAITH CENTER

GOUCHER COLLEGE

2

3

4

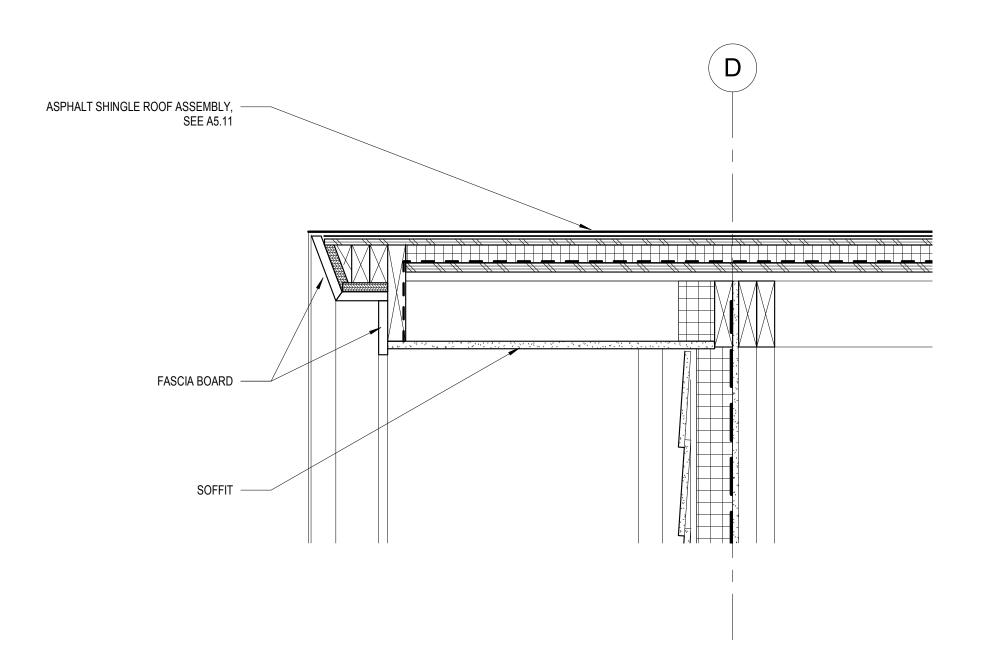

5

6

ASPHALT SHINGLE ROOF ASSEMBLY,

7

8



10

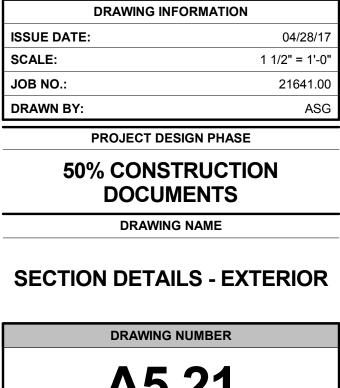
11

9

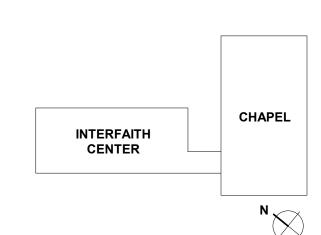
8F TYPICAL GUTTER ROOF EAVE 1 1/2" = 1'-0"

9

8C TYPICAL ROOF EAVE 1 1/2" = 1'-0"


8

11


10

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE

KEY PLAN

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246 www.koffel.com

www.spexsys.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

CIVIL ENGINEER WBCM

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286

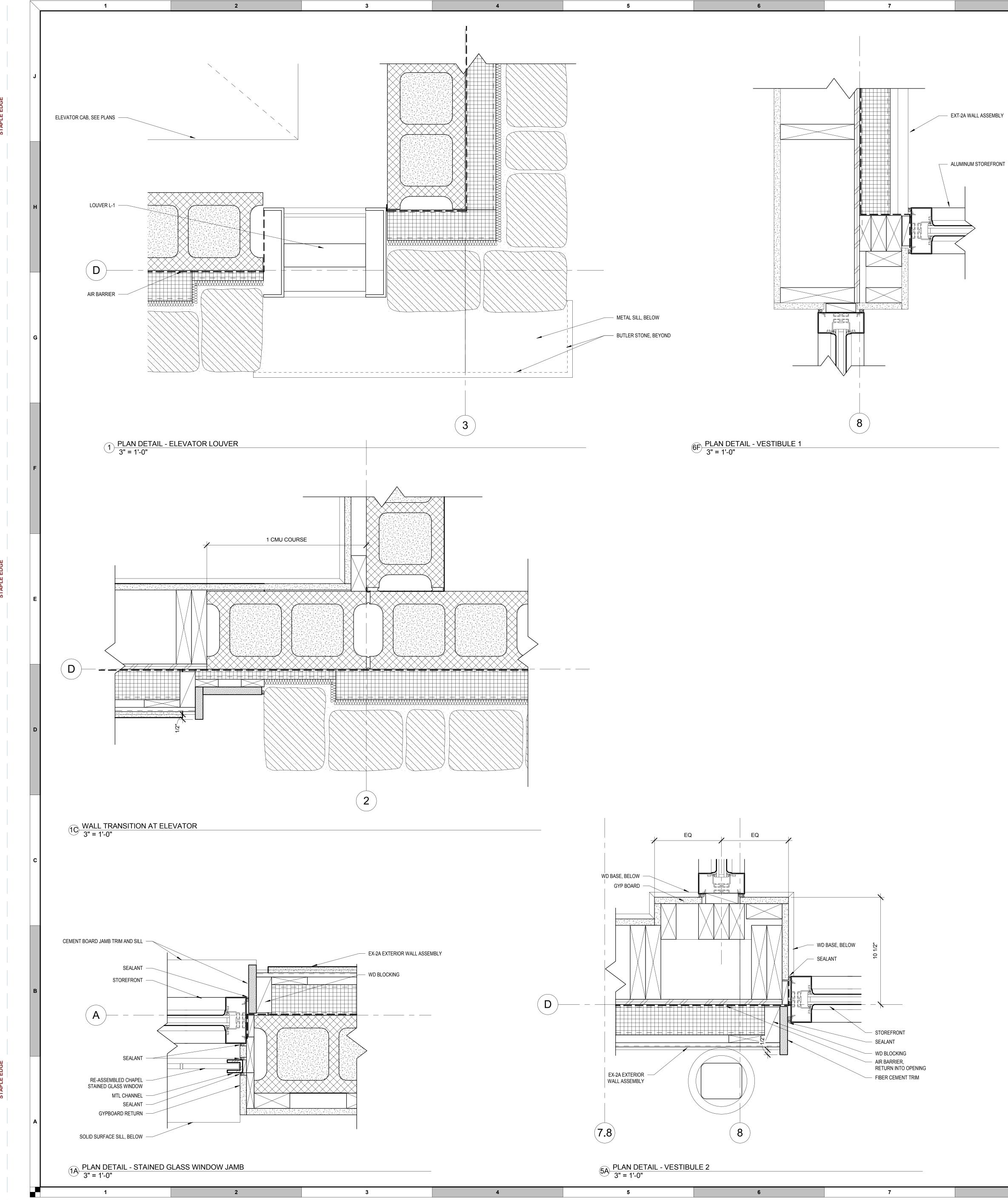
410.512.4500 www.wbcm.com

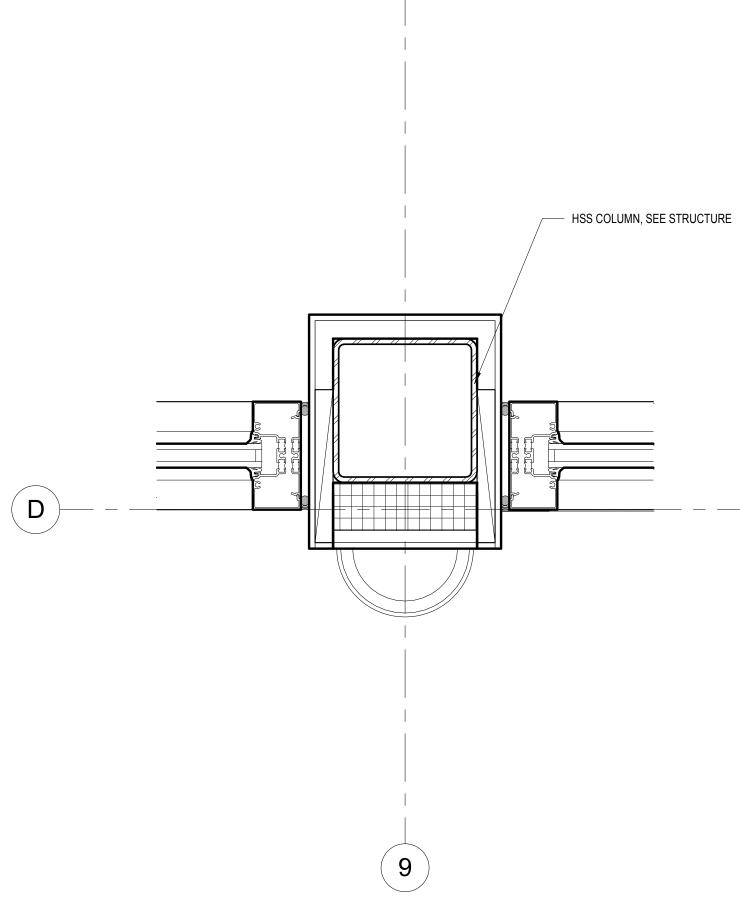
LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500 www.asg-architects.com

1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

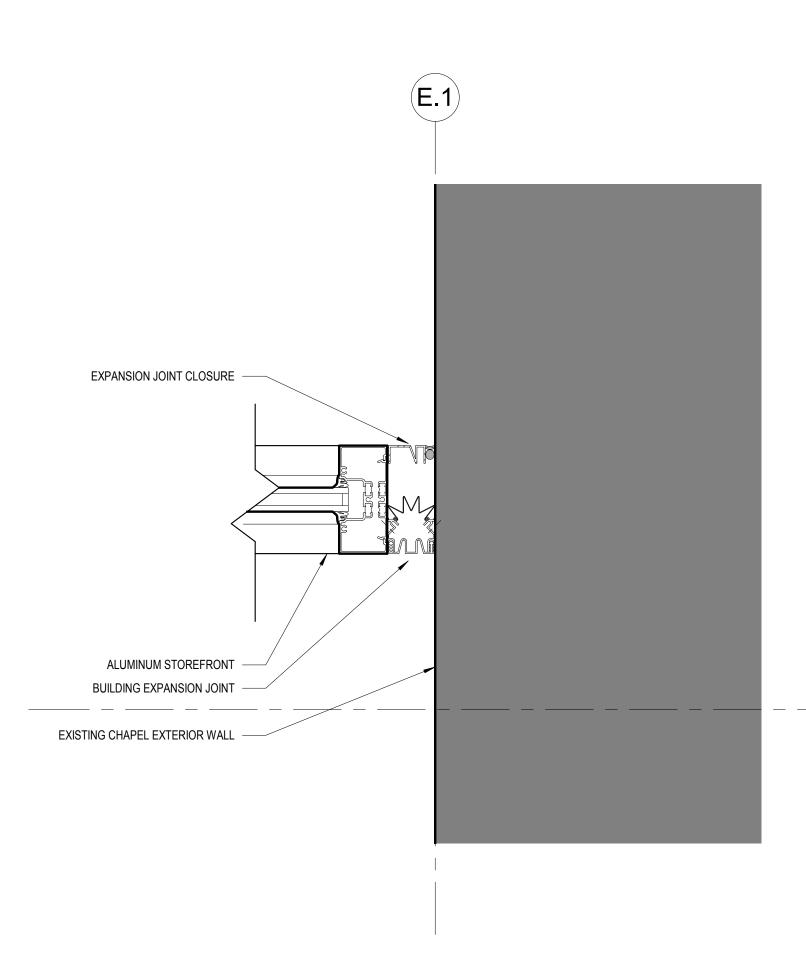

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES


GOUCHER

GOLDSMITH INTERFAITH CENTER

> GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

> > PROJECT TEAM



10

11

9F PLAN DETAIL - VESTIBULE 3 3" = 1'-0"

9

10

—(E.H) \sim

11

9

DRAWING NUMBER

PLAN DETAILS - EXTERIOR

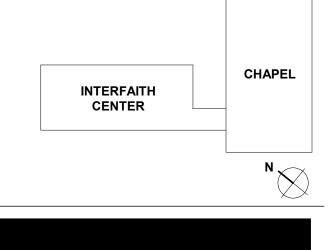
DRAWING NAME

DOCUMENTS

PROJECT DESIGN PHASE **50% CONSTRUCTION**

ISSUE DATE:

SCALE:


JOB NO.:

DRAWN BY:

DRAWING INFORMATION 04/28/17 3" = 1'-0" 21641.00 ASG

NOT FOR CONSTRUCTION

AYERS SAINT GROSS **ARCHITECTS + PLANNERS**

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING

410.712.0390 www.spexsys.com

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

PROJECT INFORMATION

GOUCHER

GOLDSMITH INTERFAITH CENTER

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

PROJECT TEAM

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500

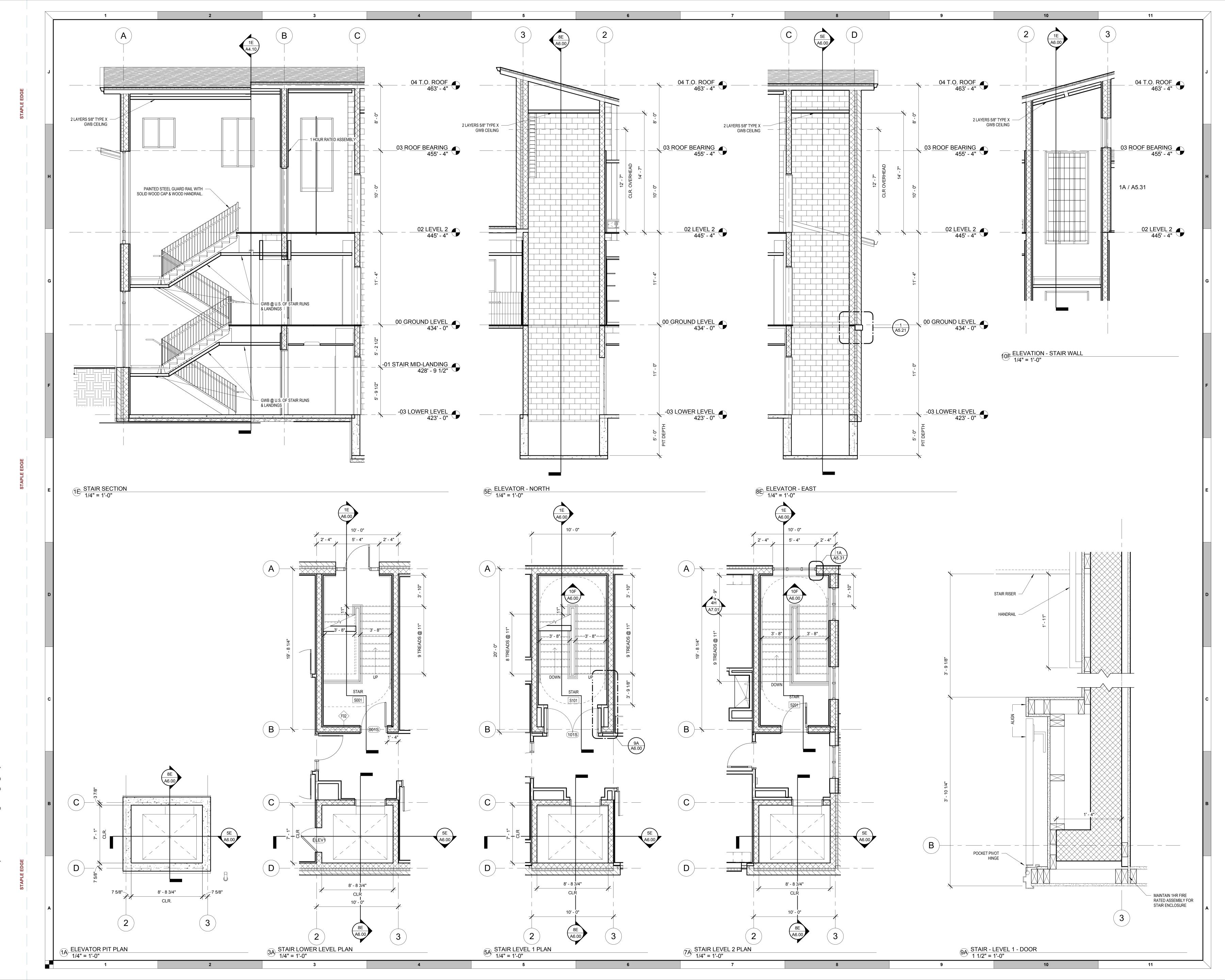
www.muellerassoc.com

STRUCTURAL ENGINEER

MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

www.morabitoconsultants.com


CIVIL ENGINEER

WBCM

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286

410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

© COPYRIGHT AYERS SAINT GROSS, 2017

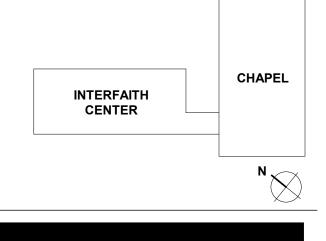
& SECTIONS DRAWING NUMBER

STAIR AND ELEVATOR PLANS

DRAWING NAME

DOCUMENTS

PROJECT DESIGN PHASE **50% CONSTRUCTION**


DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: ASG

NOT FOR CONSTRUCTION

SAINT GROSS

AYERS

REVISIONS REV. # DESCRIPTION DATE KEY PLAN

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

KIBART

HANOVER, MD 21076 410.712.0390 www.spexsys.com COMMISSIONING

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS SPARKS, MD 21152 410.467.2377

410.646.4500

LINTHICUM, MD 21090

952 RIDGEBROOK ROAD, SUITE 1700

www.morabitoconsultants.com **CIVIL ENGINEER**

WBCM

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500

www.wbcm.com

1306 CONCOURSE DRIVE, SUITE 100

GOLDSMITH INTERFAITH CENTER GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500 www.asg-architects.com

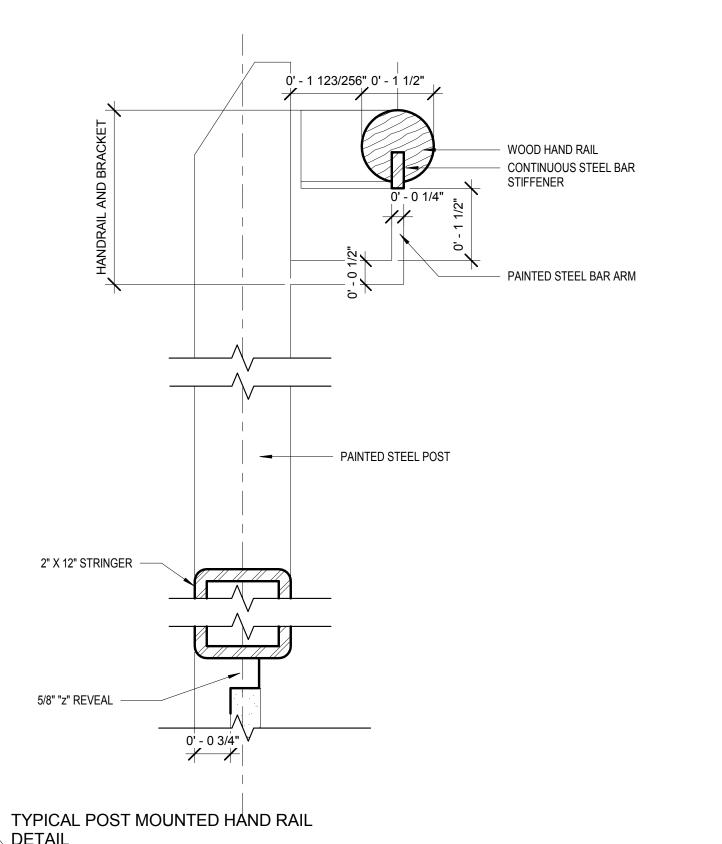
M/E/P & FIRE PROTECTION ENGINEER

MUELLER ASSOCIATES

PROJECT INFORMATION

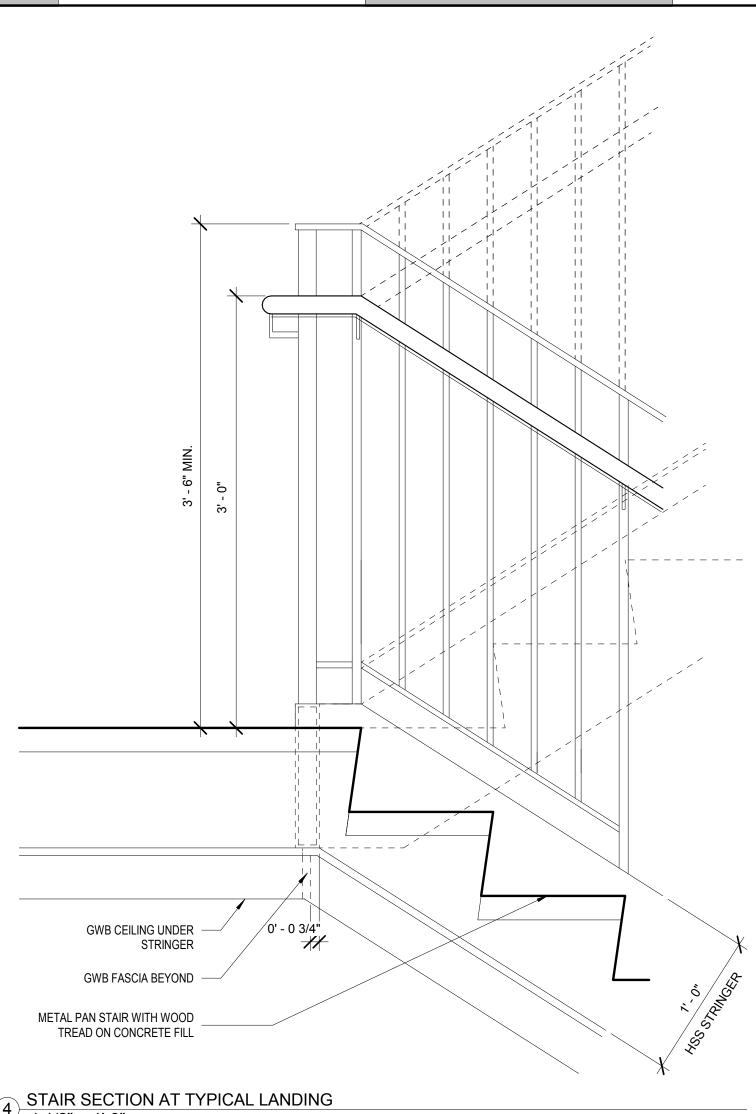
GOUCHER

—college—



2

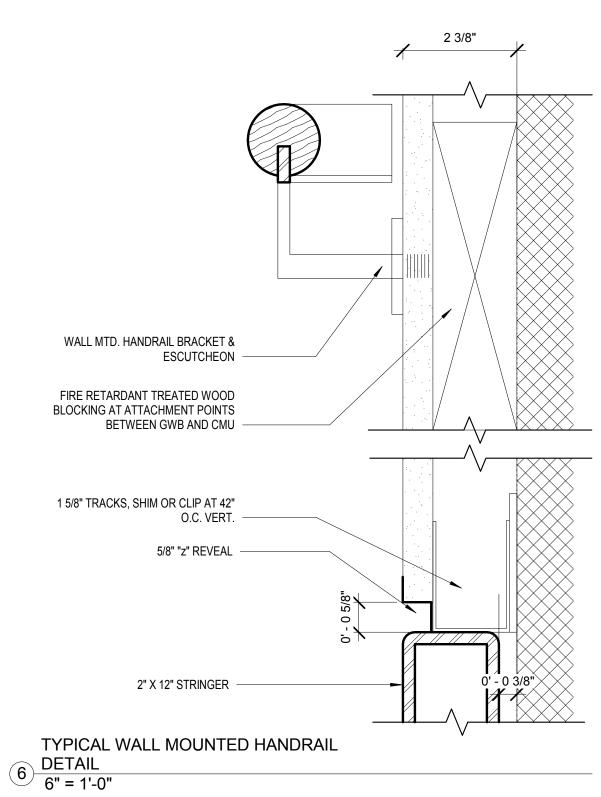
3


1

5

6

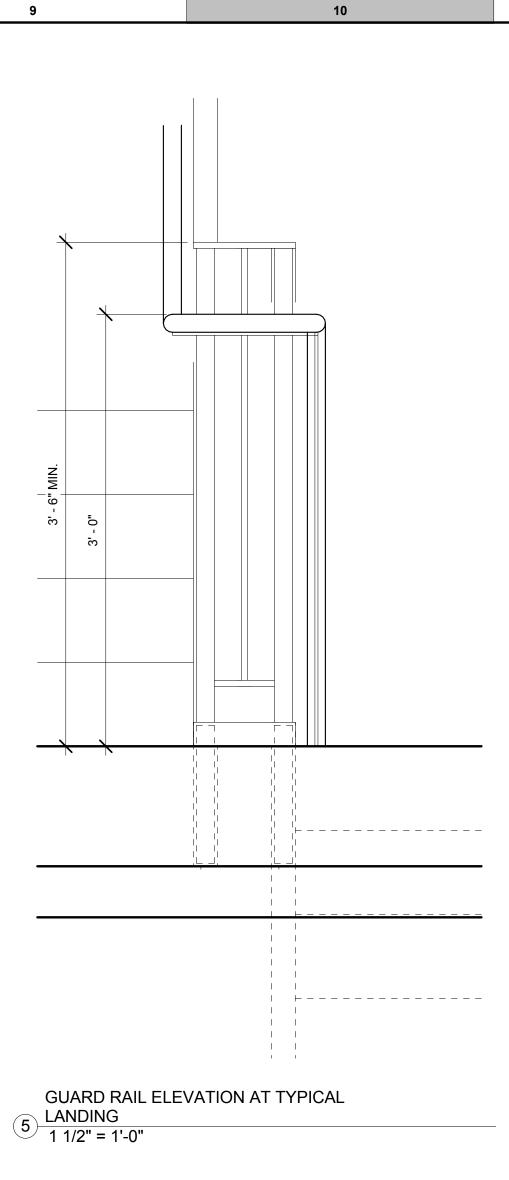
4


8

4 STAIR SECTION AT TYPICAL LANDING 1 1/2" = 1'-0"

7

8

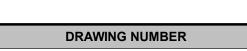

7

5

6

4

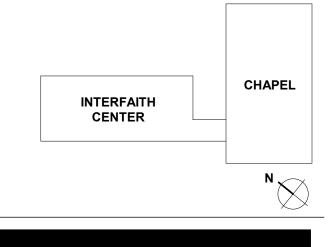
11


10

9

11

STAIR & ELEVATOR DETAILS


DRAWING NAME

50% CONSTRUCTION DOCUMENTS

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: ASG PROJECT DESIGN PHASE

NOT FOR CONSTRUCTION

AYERS SAINT GROSS **ARCHITECTS + PLANNERS**

REVISIONS REV. # DESCRIPTION DATE KEY PLAN

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246 www.koffel.com

COMMISSIONING

410.712.0390 www.spexsys.com

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

WBCM

www.morabitoconsultants.com CIVIL ENGINEER

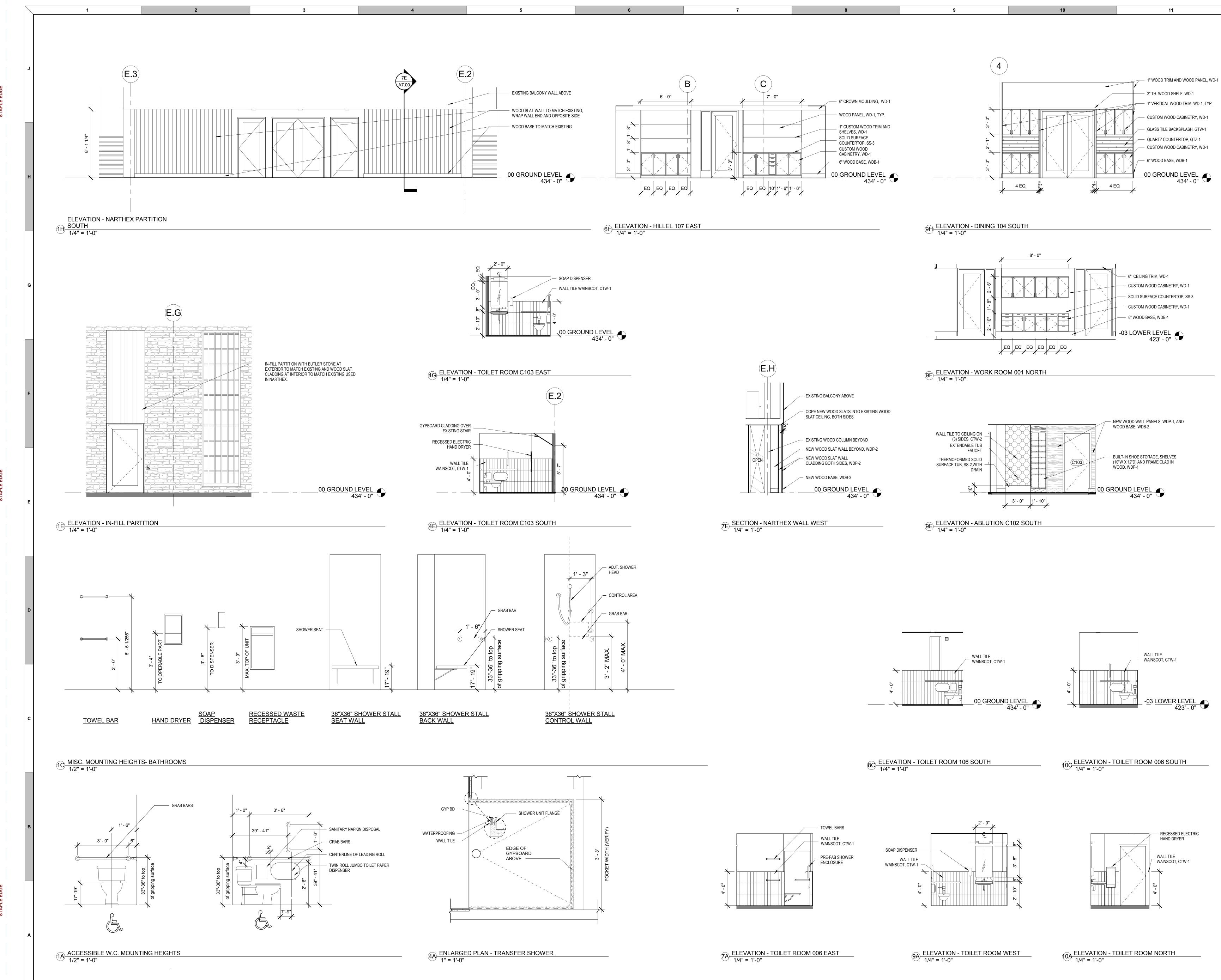
300 EAST JOPPA ROAD, SUITE 200

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500

www.asg-architects.com

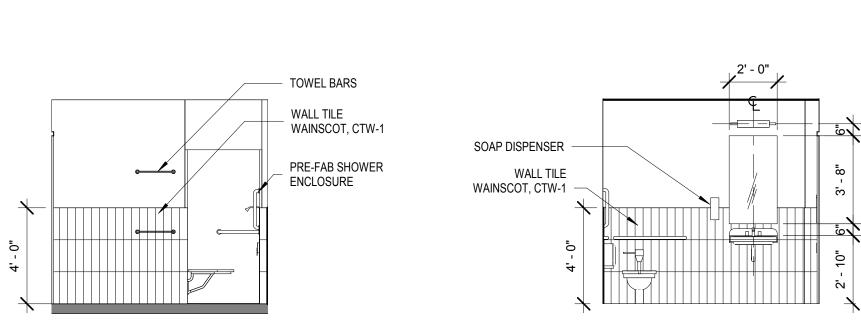

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100

LINTHICUM, MD 21090

GOLDSMITH INTERFAITH CENTER

GOUCHER COLLEGE

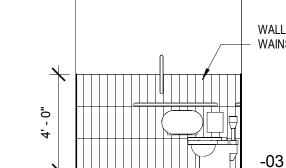
GOUCHER



4

5

7


6

9

10

11

 	6" CROWN MOULDING, WD-1
	WOOD PANEL, WD-1, TYP.
	1" CUSTOM WOOD TRIM AND SHELVES, WD-1 SOLID SURFACE COUNTERTOP, SS-3 CUSTOM WOOD CABINETRY, WD-1 6" WOOD BASE, WDB-1
_00	GROUND LEVEL 434' - 0"

CUSTOM WOOD CABINETRY, WD-1 GLASS TILE BACKSPLASH, GTW-1 QUARTZ COUNTERTOP, QTZ-1 CUSTOM WOOD CABINETRY, WD-1

A7.00

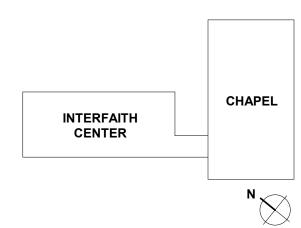
DRAWING NUMBER

DOCUMENTS
DRAWING NAME

PROJECT DESIGN PHASE **50% CONSTRUCTION**

ISSUE DATE: 04/28/17 As indicated 21641.00 ASG

NOT FOR CONSTRUCTION


DRAWING INFORMATION

SCALE:

JOB NO.:

DRAWN BY:

REVISIONS							
REV. #	DESCRIPTION	DATE					
	KEY PLAN						

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246 www.koffel.com

COMMISSIONING

www.spexsys.com

www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230 410.347.8500

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER SPARKS, MD 21152

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

PROJECT INFORMATION

GOUCHER

-college-

GOLDSMITH INTERFAITH

CENTER

GOUCHER COLLEGE

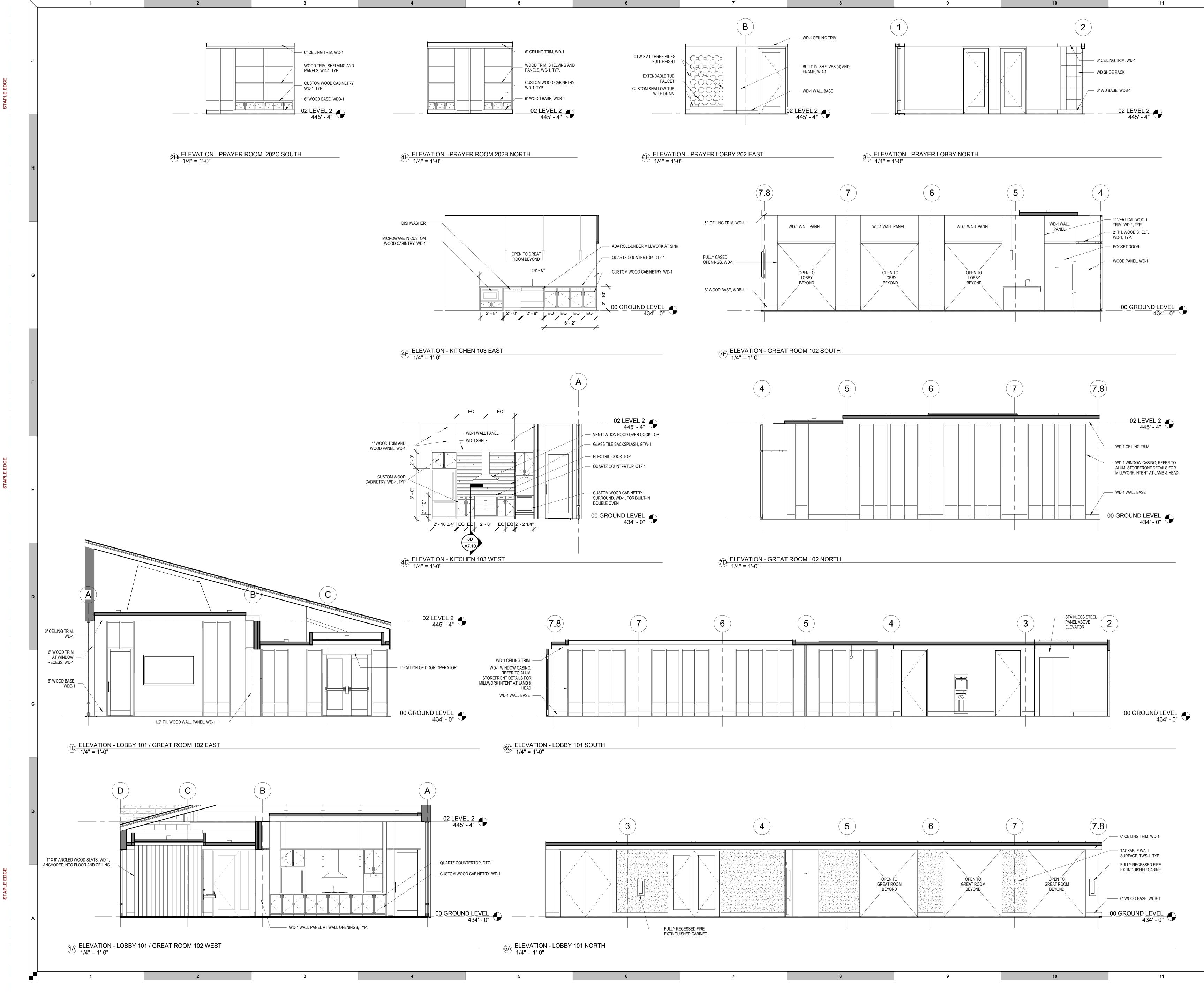
1021 DULANEY VALLEY RD

BALTIMORE MD 21204

PROJECT TEAM

ARCHITECT

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES


LINTHICUM, MD 21090

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

1306 CONCOURSE DRIVE, SUITE 100

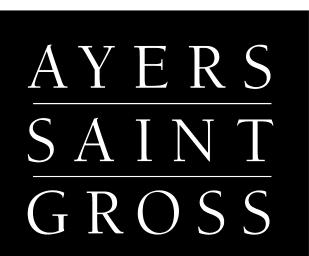
410.467.2377

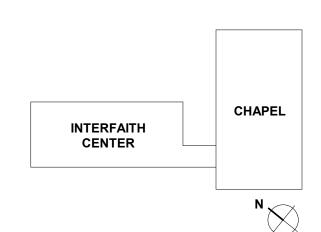
www.morabitoconsultants.com

© COPYRIGHT AYERS SAINT GROSS, 2017

INTERIOR ELEVATIONS

DRAWING NAME


DOCUMENTS


PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: 1/4" = 1'-0' JOB NO.: 21641.00 DRAWN BY: ASG

NOT FOR CONSTRUCTION

GROSS **ARCHITECTS + PLANNERS**

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246 www.koffel.com

KIBART

COMMISSIONING

410.712.0390 www.spexsys.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS

SPARKS, MD 21152 410.467.2377

www.morabitoconsultants.com 300 EAST JOPPA ROAD, SUITE 200

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

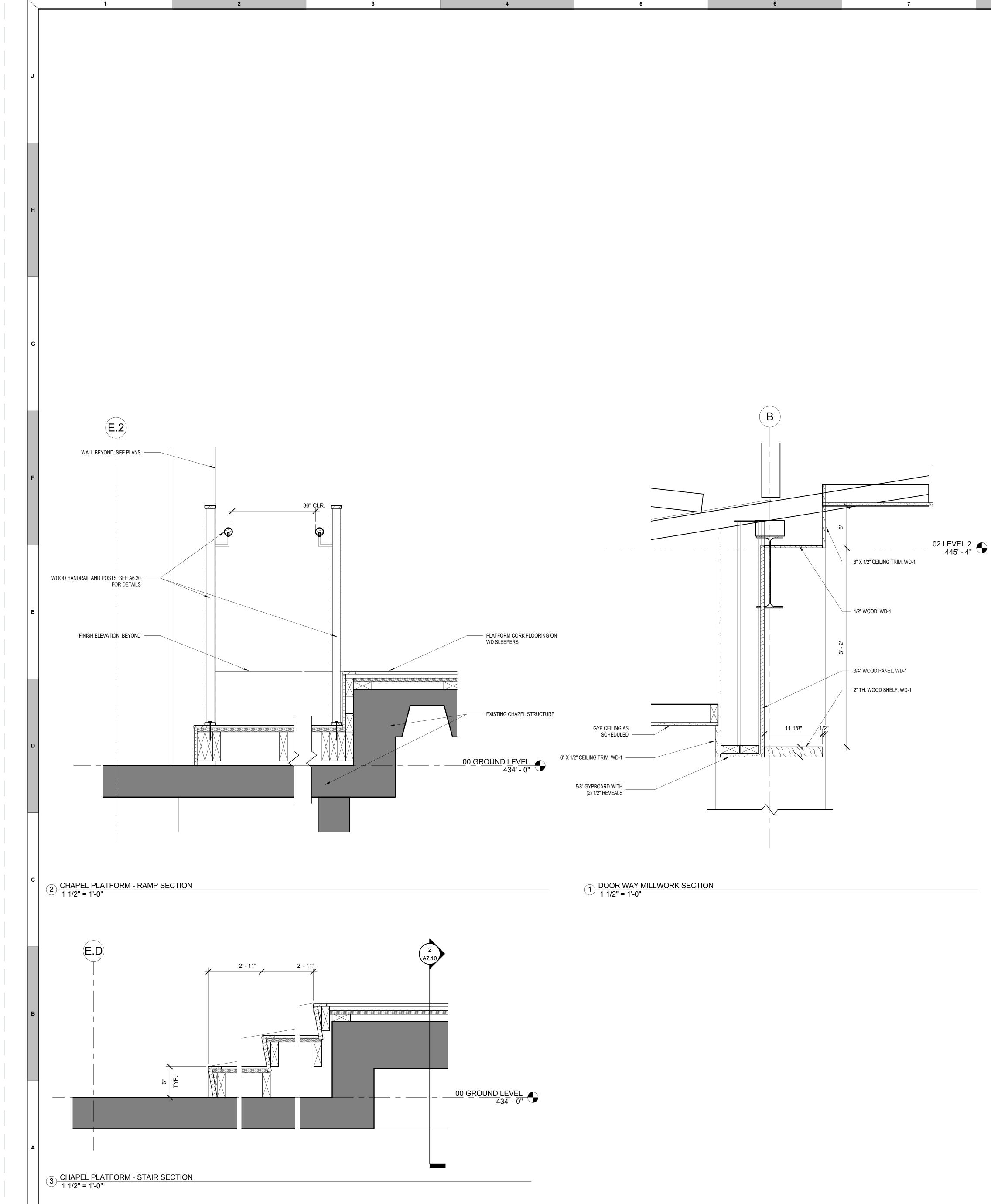
PROJECT TEAM

www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700


GOLDSMITH INTERFAITH CENTER GOUCHER COLLEGE

1021 DULANEY VALLEY RD

BALTIMORE MD 21204

GOUCHER

-college-

4

3

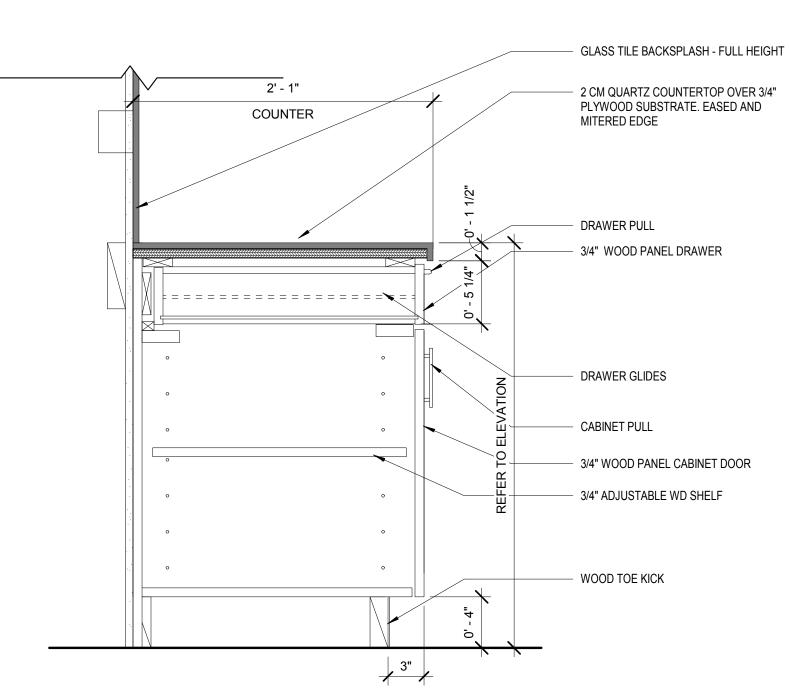
2

5

7

8

6


8D KITCHEN BASE CABINET DETAIL 1 1/2" = 1'-0"

BAS

9

8

9

11

10

10

11

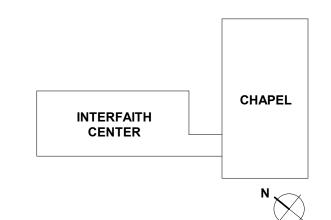
© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

INTERIOR DETAILS

DRAWING NAME

DOCUMENTS


PROJECT DESIGN PHASE **50% CONSTRUCTION**

ISSUE DATE: 04/28/17 SCALE: 1 1/2" = 1'-0" JOB NO.: 21641.00 DRAWN BY: ASG

DRAWING INFORMATION

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
		·
	KEY PLAN	

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING

HANOVER, MD 21076 410.712.0390 www.spexsys.com

www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

410.347.8500 www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM

-college-

GOLDSMITH INTERFAITH CENTER

GOUCHER

FLOOR FINISH LEGEND					
	CPT-1				
	CPT-2				
	CPT-3				
	CPT-4				
	CPT-5				
	CPT-6				
	CPT-7				
	CPT-8				
	CPT-9				
	CPT-10				
à. X ₄	CPT-11				
	CPT-12				
	PFT-1				
	PFT-2				
	PFT-3				
	SCO				

10

8

7

8

9

9

© COPYRIGHT AYERS SAINT GROSS, 2017

11

10

DRAWING NUMBER

FINISH FLOOR PLANS

DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: 1/8" = 1'-0" JOB NO.: 21641.00 DRAWN BY: ASG

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

INTERFAITH CENTER	CHAPEL
	N

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

KIBART TOWSON, MD 21204

410.712.0390 www.spexsys.com COMMISSIONING 901 DULANEY VALLEY ROAD, SUITE 301

410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

SPARKS, MD 21152 410.467.2377 CIVIL ENGINEER

www.morabitoconsultants.com WBCM

BALTIMORE, MD 21286

300 EAST JOPPA ROAD, SUITE 200

STRUCTURAL ENGINEER MORABITO CONSULTANTS

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

952 RIDGEBROOK ROAD, SUITE 1700

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100

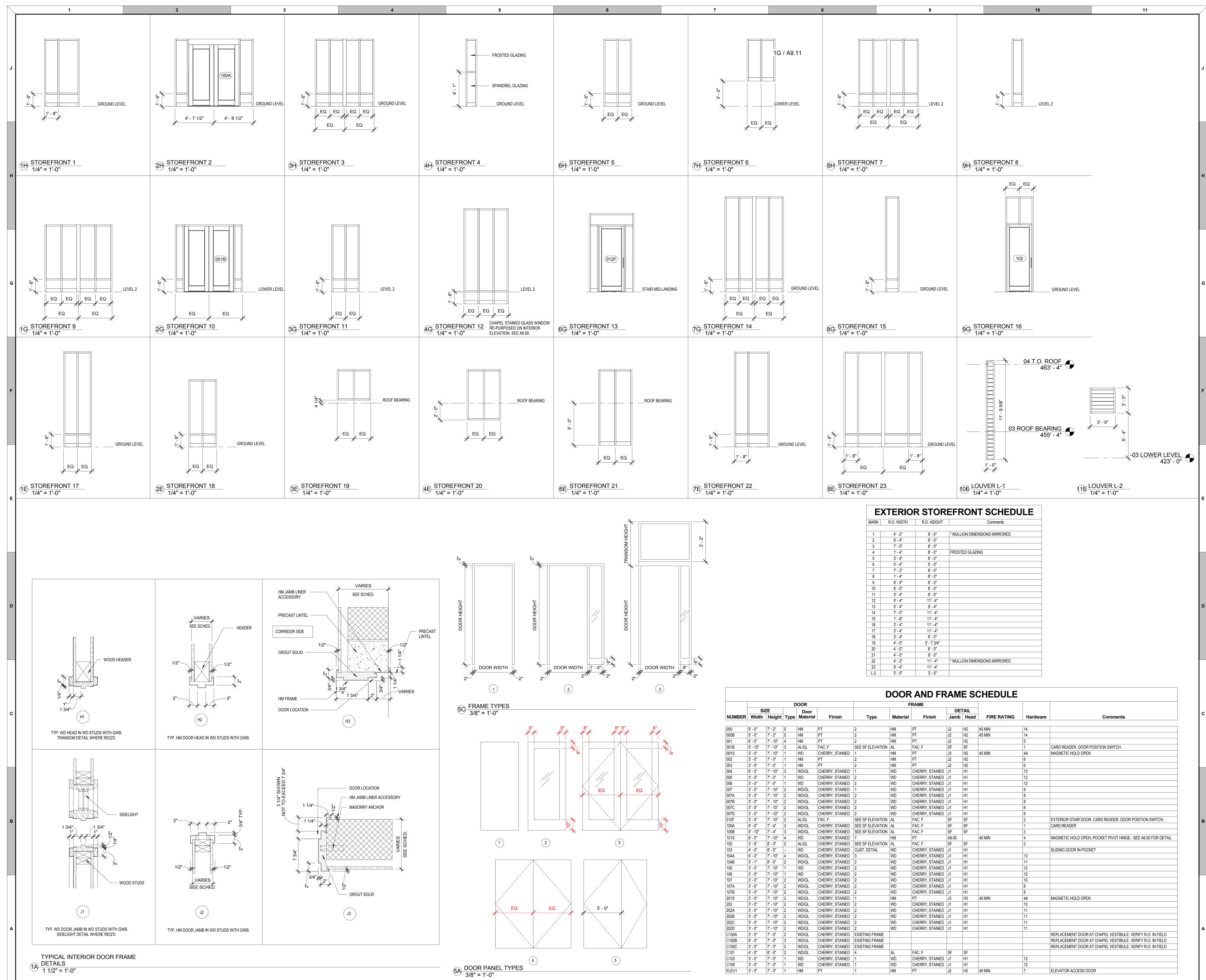
410.347.8500 www.asg-architects.com

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM

GOUCHER —college—

GOLDSMITH INTERFAITH


CENTER

3

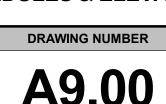
4

5

6

7

D	OOR			F	RAME					
	Door					DE	TAIL	-		
Туре	Material	Finish	Туре	Material	Finish	Jamb	Head	FIRE RATING	FIRE RATING Hardware	Comments
			1							
5		PT	2		PT	J2	H2	45 MIN	14	
5	HM	PT	2	HM	PT	J2	H2	45 MIN	14	
4	HM	PT	2	HM	PT	J2	H2		5	
3	AL/GL	FAC. F	SEE SF ELEVATION	AL	FAC. F	SF	SF		1	CARD READER. DOOR POSITION SWITCH.
1	WD	CHERRY, STAINED	1	HM	PT	J3	H3	45 MIN	4A	MAGNETIC HOLD OPEN
1	HM	PT	2	HM	PT	J2	H2		6	
	HM	PT	2	HM	PT	J2	H2		6	
3	WD/GL	CHERRY, STAINED	1	WD	CHERRY, STAINED	J1	H1		13	
1	WD	CHERRY, STAINED	2	WD	CHERRY, STAINED	J1	H1		12	
	WD	CHERRY, STAINED	2	WD	CHERRY, STAINED	J1	H1		12	
2	WD/GL	CHERRY, STAINED	1	WD	CHERRY, STAINED	J1	H1		9	
2	WD/GL	CHERRY, STAINED	2	WD	CHERRY, STAINED	J1	H1		8	
2			2	WD	CHERRY, STAINED		H1		8	
2	WD/GL	CHERRY, STAINED	2	WD	CHERRY, STAINED	J1	H1		8	
2	WD/GL	CHERRY, STAINED	2	WD		J1	H1		8	
2		FAC. F	SEE SF ELEVATION	AL	FAC. F	SF	SF		2	EXTERIOR STAIR DOOR. CARD READER. DOOR POSITION SWITCH.
3		CHERRY, STAINED	SEE SF ELEVATION		FAC. F	SF	SF		1	CARD READER
3		CHERRY, STAINED	SEE SF ELEVATION		FAC. F	SF	SF		3	
•		CHERRY, STAINED	1	HM	PT	A6.00		45 MIN	4	MAGNETIC HOLD OPEN, POCKET PIVOT HINGE - SEE A6.00 FOR DETA
2		CHERRY, STAINED	SEE SF ELEVATION		FAC. F	SF	SF		2	
-	WD	CHERRY, STAINED	CUST. DETAIL	WD	CHERRY, STAINED	J1	H1		_	SLIDING DOOR IN POCKET
1		CHERRY, STAINED	3	WD	CHERRY, STAINED		H1		13	
>			2	WD	CHERRY, STAINED		H1		11	
			2	WD	CHERRY, STAINED		H1		12	
1		CHERRY, STAINED	2	WD	CHERRY, STAINED		H1		12	
)	-	,	2	WD	CHERRY, STAINED		H1		10	
-	WD/GL	CHERRY, STAINED	2	WD	CHERRY, STAINED		H1		8	
-	WD/GL	CHERRY, STAINED	2	WD	CHERRY, STAINED		H1		8	
-		CHERRY, STAINED	1	HM	PT	J3	H3	45 MIN	4A	MAGNETIC HOLD OPEN
-		CHERRY, STAINED	2	WD	CHERRY, STAINED		H1		10	
-			2	WD	CHERRY, STAINED		H1		10	
<u>2</u>		CHERRY, STAINED		WD	CHERRY, STAINED		H1		11	
-			2	WD	CHERRY, STAINED		H1		11	
2		CHERRY, STAINED	2	WD	CHERRY, STAINED		H1		11	
-		CHERRY, STAINED	EXISTING FRAME		OTENT, STAINED				11	REPLACEMENT DOOR AT CHAPEL VESTIBULE. VERIFY R.O. IN FIELD
<u>-</u> 2		CHERRY, STAINED	EXISTING FRAME							REPLACEMENT DOOR AT CHAPEL VESTIBULE. VERIFY R.O. IN FIELD
י נ										
<u> </u>	WD/GL	CHERRY, STAINED	EXISTING FRAME	A1		SF	SE.			REPLACEMENT DOOR AT CHAPEL VESTIBULE. VERIFY R.O. IN FIELD
<u><</u>		CHERRY, STAINED	4	AL	FAC. F		SF		10	
1		CHERRY, STAINED	1	WD	CHERRY, STAINED		H1		12	
1	WD	CHERRY, STAINED	1	WD	CHERRY, STAINED		H1		12	
	HM	PT	1	HM	PT	J2	H2	45 MIN	7	ELEVATOR ACCESS DOOR

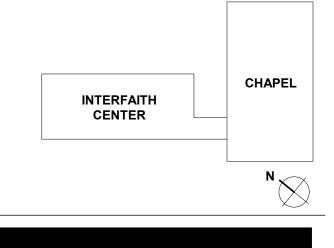

9

10

11

DOOR & STOREFRONT SCHEDULES & ELEVATIONS

DOCUMENTS


DRAWING NAME

PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: ASG

NOT FOR CONSTRUCTION

AYERS SAINT GROSS **ARCHITECTS + PLANNERS**

	REVISIONS	
REV. #	DESCRIPTION	DATE
<u> </u>		
	KEY PLAN	

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

COMMISSIONING

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

PROJECT TEAM

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER

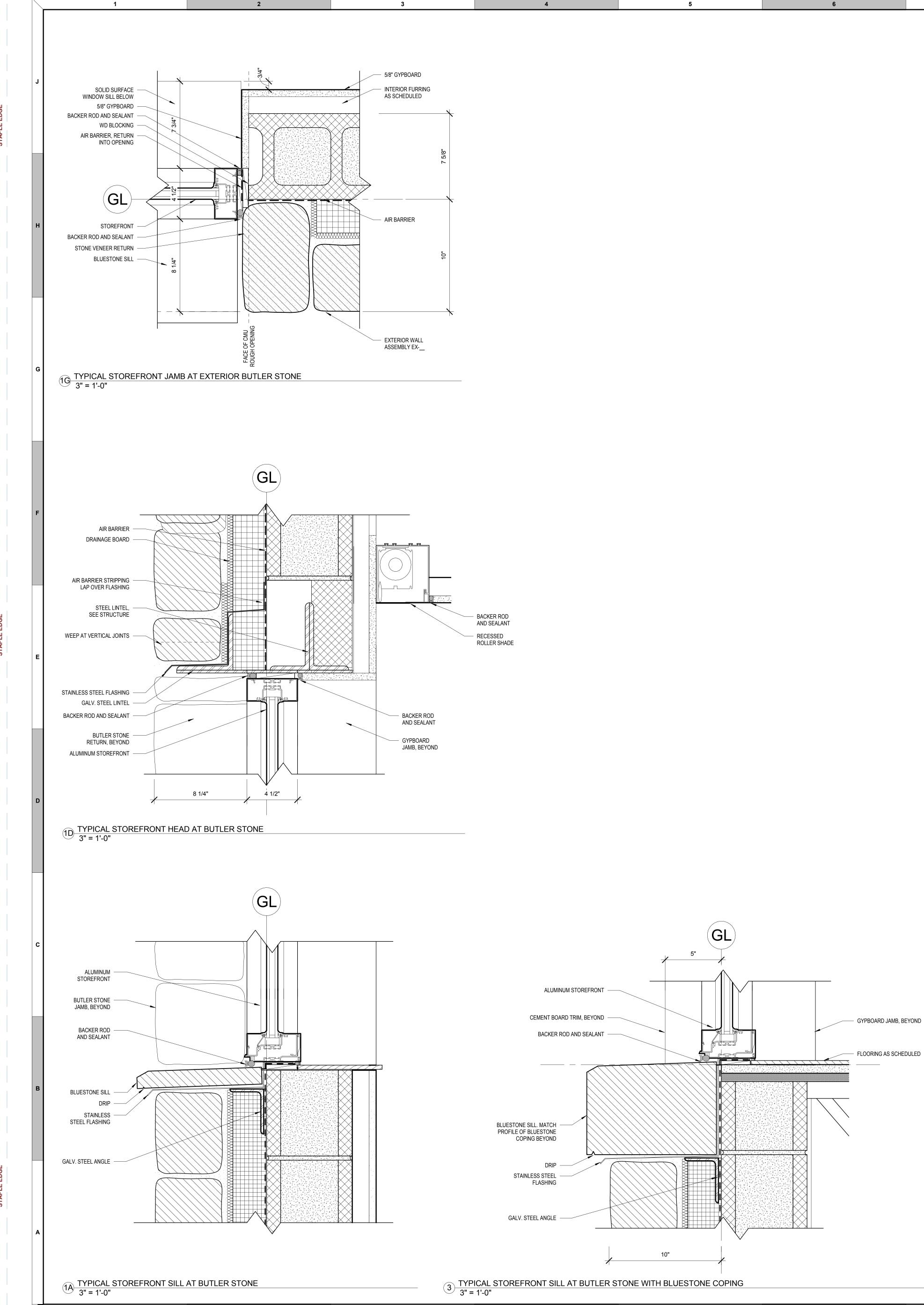
MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286

410.512.4500

www.wbcm.com

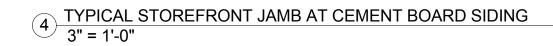

LANDSCAPE ARCHITECT

GOLDSMITH INTERFAITH CENTER

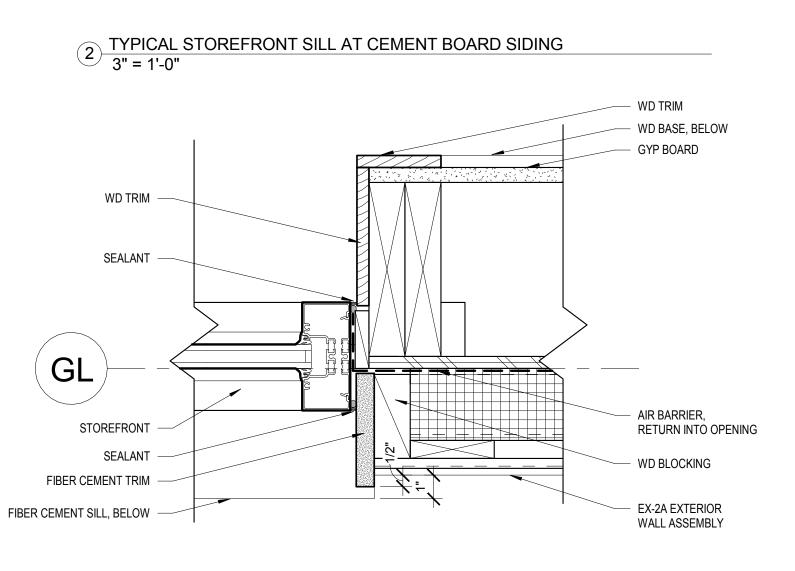
PROJECT INFORMATION

GOUCHER

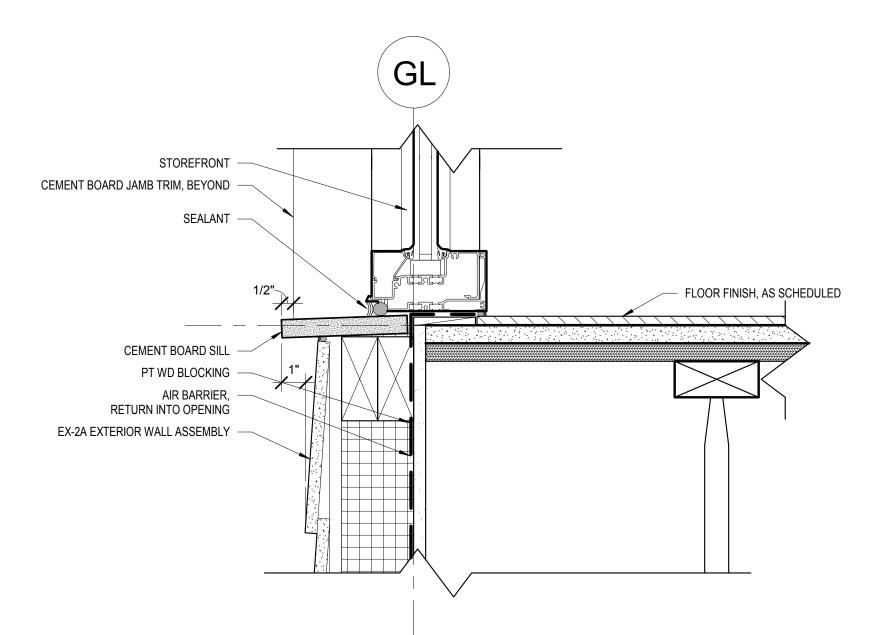
—college—



5

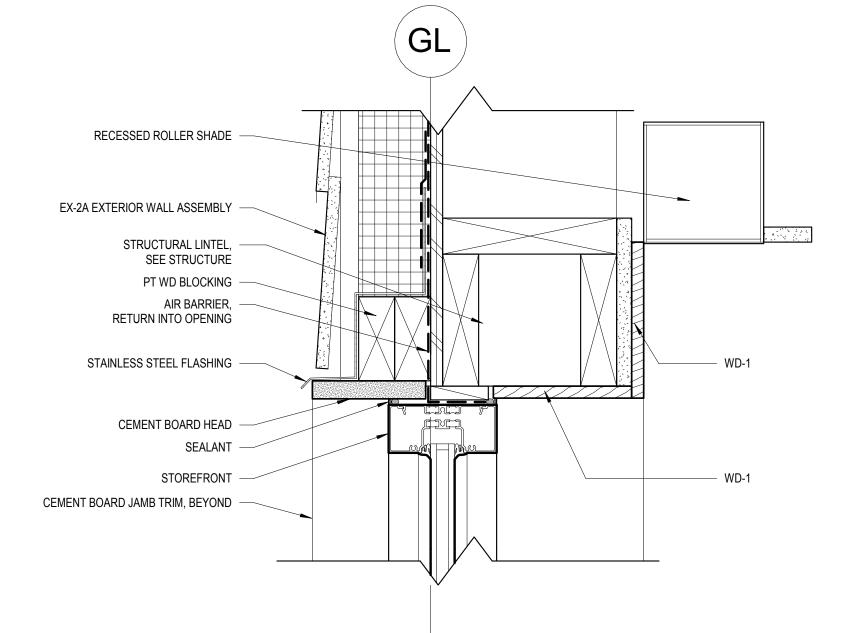

6

7


4

9

10



7

8

9

10

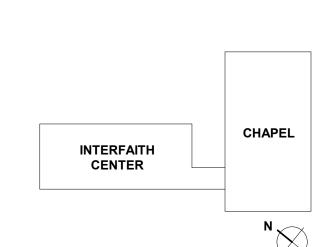
11

© COPYRIGHT AYERS SAINT GROSS, 2017

11

STOREFRONT DETAILS

DOCUMENTS	
DRAWING NAME	


PROJECT DESIGN PHASE
50% CONSTRUCTION
DOCUMENTS

DRAWING INFORMATION				
ISSUE DATE:	04/28/17			
SCALE:	3" = 1'-0"			
JOB NO.:	21641.00			
DRAWN BY:	ASG			
PROJECT DESIGN PHASE				

NOT FOR CONSTRUCTION

REVISIONS						
REV. #	DESCRIPTION	DATE				
	KEY PLAN					

TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246 www.koffel.com

COMMISSIONING KIBART

www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

www.asg-architects.com IT / AV / SECURITY SPEXSYS

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT

SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

300 EAST JOPPA ROAD, SUITE 200

952 RIDGEBROOK ROAD, SUITE 1700

www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

LINTHICUM, MD 21090 410.646.4500

1306 CONCOURSE DRIVE, SUITE 100

www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM ARCHITECT

GOLDSMITH INTERFAITH CENTER

GOUCHER

-college-

A: FIRST CHARACTER INDICATES THE WALL CONSTRUCTION TYPE

2. THE GRAPHIC SYMBOL DESIGNATION HAS THREE BASE CHARACTERS, AND IN SOME CASES A MODIFIER. PARTITION TYPE LABELS GENERALLY FOLLOW

1. PARTITIONS ARE DISTINGUISHED ON FLOOR PLANS BY SYMBOL, GRAPHIC DESIGNATION, OR A COMBINATION OF BOTH.

THE FORMAT ILLUSTRATED BELOW, UNLESS OTHERWISE NOTED IN PARTITION SCHEDULE.

2

0: SECOND CHARACTER INDICATES THE FIRE RATING 4: THIRD CHARACTER DENOTES THE STUD OR CMU THICKNESS (NOMINAL) A: FOURTH CHARACTER (OPTIONAL) IS A MODIFIER; REFERENCED IN THE "OTHER CRITERIA" COLUMN OF THE CORRESPONDING PARTITION SCHEDULE

3

3

2

4

4

WALL CONSTRUCTION TYPE:

1

NOTES:

(A04A)

A: STUD/DRYWALL PARTITION **C: CMU PARTITION**

F: FURRING PARTITION S: SHAFTWALL T: MOISTURE-RESISTANT PARTITION (TLT PARTITIONS) Y: CUSTOM PARTITION

FIRE RATING:

0: NOT RATED .5: 1/2 HR. RATED 1: 1 HR. RATED 2: 2 HR. RATED

STUD/CMU THICKNESS:

1: 1x WOOD FURRING 2: 1 1/2" WOOD STUD

4: 3 1/2" WOOD STUD OR 4" CMU (NOM.) OR 4" C-H 6: 5 1/2" WOOD STUD

8: 8" CMU (NOM.)

5D CX8: MASONRY PARTITION 1 1/2" = 1'-0"

5

STRUCTURE A	BOVE				STRUCTUF
CONT. SEALAN					
CLIP ANGLE @ SIDE	6' O.C., EA		A 4		
		-		HEAD	TOP RUNN
		-			
CONT HORZ RI	EINF. ———				
		-	0' - 7 157/	/256" PLAN	WD STUD (SEE SIZE B
SEE STRUCTU	RAL DWGS				
FOR VERT REI	NF.				BOTTOM R TO CONC.,
grout reinf. Height	CELLS FULL			FINISH FLR ELEVATION	SEALANT,
TYPE ST	UD TYPE	FIRE RESIST. TEST	STC RATING	OTHER CRITERIA	TYPE
C18 8"	CMU	U905		1 HR. RATED CMU WALL	Y04
C28 8"	CMU	U905		2 HR. RATED CMU WALL	

5G A0X - WD STUD, DRYWALL PARTITION 1 1/2" = 1'-0"

5

STRUCTURE ABOVE

SEALANT AT BOTH SIDES OF

STUDS HELD 3/8" TO 3/4" LESS

THAN ASSEMBLY HEIGHT -----

GWB

SCHEDUL	NER CHANNEL OR .ED, DEFLECTION P TRACK SECURE CTURE							
WD STUD @ 16" O.C., TYP - (1) LAYER 5/8" GWB BOTH SIDES SEE SIZE BELOW PLAN								
	UNFACED GLASS FIBER SOUND							
BOTTOM TO CONC	RUNNER SECURE 2., TYP.		' - 4 3/4"					
SEALANT	, Both Sides —			BASE				
TYPE	STUD TYPE	FIRE RESIST. TEST	STC RATING	OTHER CRITERIA				
A04	WD 2"x4"			3-1/2" UNFACED GLASS FIBER SOUND ATTENUATION BATT INSULATION				
A06	WD 2"X6"			5-1/2" UNFACED GLASS FIBER SOUND ATTENUATION BATT INSULATION				
A08	WD 2"X8"			7-1/2" UNFACED GLASS FIBER SOUND ATTENUATION BATT INSULATION				

6

FINISH FACE OF CEILING,

HEAD

SEE RCP

AX4 - RATED WD STUD, DRYWALL PARTITION1 1/2" = 1'-0"

7

6

AYER	OUTERMOST GWE			BASE
TYPE	STUD TYPE	FIRE RESIST. TEST	STC RATING	OTHER CRITERIA
A14	WD 2"x4"	U465		3-1/2" UNFACED GLASS FIBER SOUND ATTENUATION BATT INSULATION
A14	WD 2"x4"	U465	MIN. 50	3-1/2" UNFACED GLASS FIBER SOUND ATTENUATION BATT INSULATION; ADDITIONAL
				LAYER OF 5/8" GWB ON EACH SIDE

8

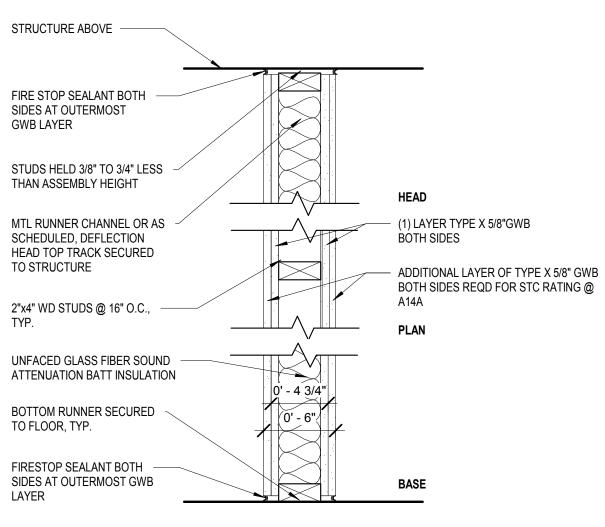
FIRESTOP SEALANT BOTH —

BOTTOM RUNNER SECURED TO FLOOR, TYP.

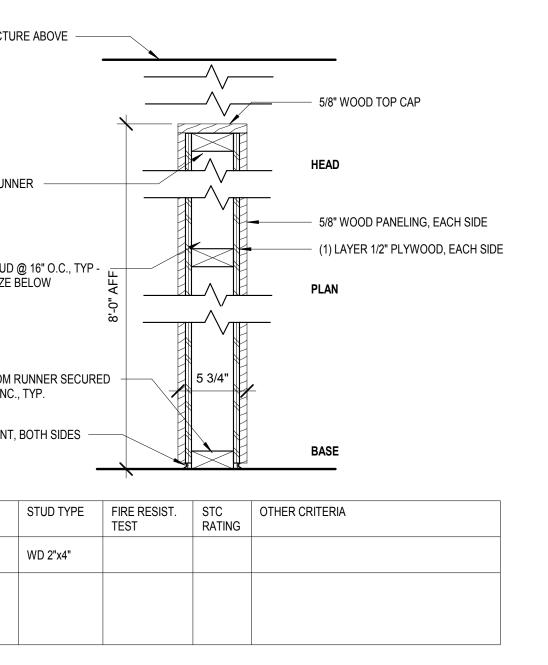
UNFACED GLASS FIBER SOUND

2"x4" WD STUDS @ 16" O.C.,

HEAD TOP TRACK SECURED TO STRUCTURE

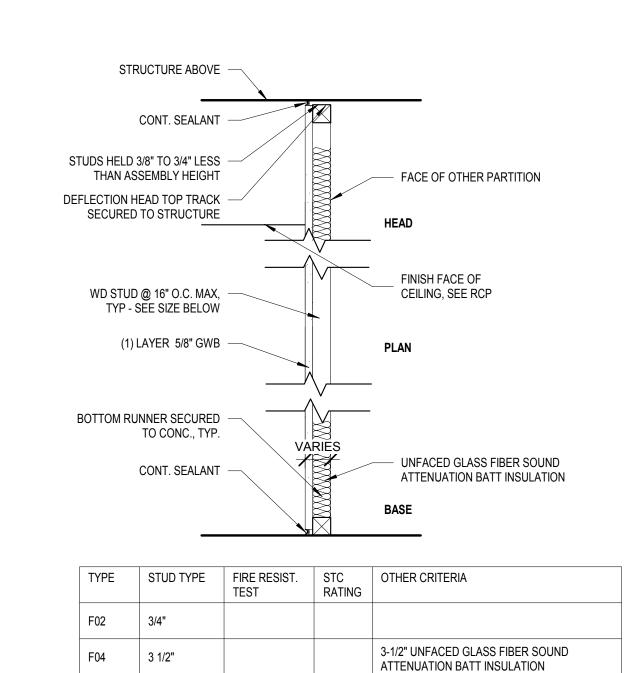

MTL RUNNER CHANNEL OR AS SCHEDULED, DEFLECTION

STUDS HELD 3/8" TO 3/4" LESS THAN ASSEMBLY HEIGHT


FIRE STOP SEALANT BOTH -SIDES AT OUTERMOST GWB LAYER

STRUCTURE ABOVE

7

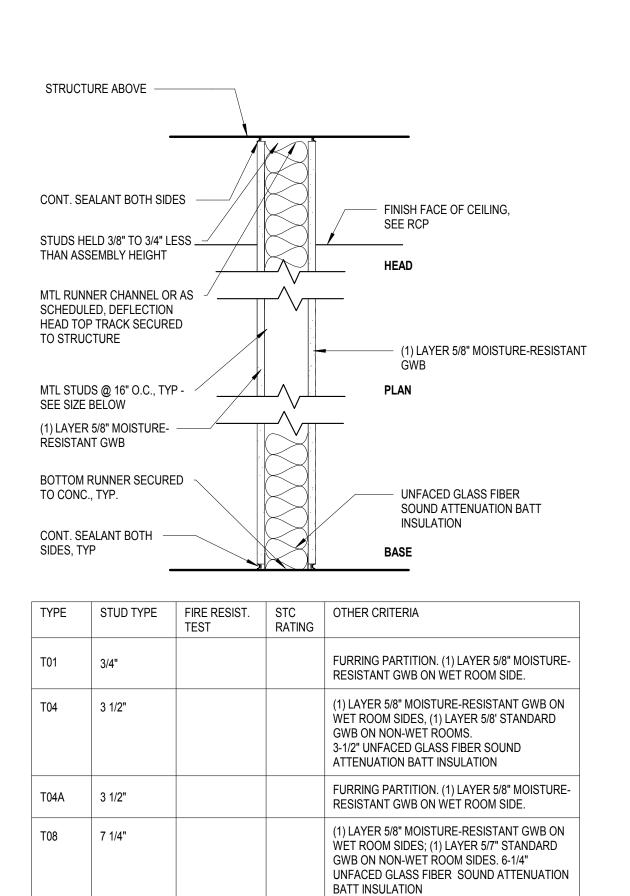


9

9

7D Y0X - WD STUD, WD PANEL PARTITION 1 1/2" = 1'-0"

11


5-1/2" UNFACED GLASS FIBER SOUND

ATTENUATION BATT INSULATION

10

100 F0X - FURRING PARTITION 1 1/2" = 1'-0"

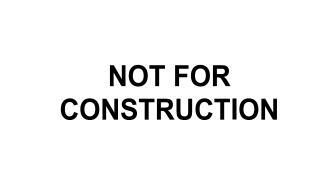
F06 5 1/2"

10D T0X - WD STUD, MOISTURE-RESISTANT DRYWALL PARTITION 1 1/2" = 1'-0"

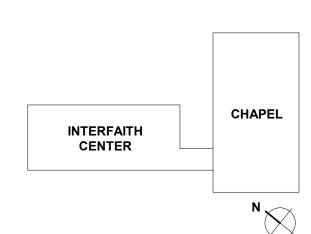
11

10

© COPYRIGHT AYERS SAINT GROSS, 2017



PARTITION TYPES


DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: ASG

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246

www.koffel.com

COMMISSIONING

410.712.0390 www.spexsys.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY

LANDSCAPE ARCHITECT

www.morabitoconsultants.com CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

STRUCTURAL ENGINEER MORABITO CONSULTANTS SPARKS, MD 21152 410.467.2377

952 RIDGEBROOK ROAD, SUITE 1700

300 EAST JOPPA ROAD, SUITE 200

410.646.4500 www.muellerassoc.com

LINTHICUM, MD 21090

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM

GOUCHER COLLEGE

GOLDSMITH INTERFAITH

CENTER

PROJECT INFORMATION GOUCHER

	FINISH SCHEDULE						
Key Name	Material	Manufacturer (Basis of Design)	Style	Color	Size	Location	Remarks
1-FLOOR							
CPT-1	CARPET TILE	SHAW	MICA TILE, ASHLAR INSTALLATION	SMOKY QUARTZ	18X36	OFFICES	ALLOW \$30/SY MATERIAL COST
CPT-2	CARPET TILE	SHAW	QUARTZ TILE, ASHLAR INSTALLATION	SMOKY QUARTZ	18X36	WORK ROOM	ALLOW \$30/SY MATERIAL COST
CPT-3	CARPET TILE	INTERFACE	HUMAN NATURE, HN 830, ASHLAR INSTALLATION	BONE 104244	25CM X 1M	QUIET LOUNGE BORDER	ALLOW \$30/SY MATERIAL COST
CPT-4	CARPET TILE	INTERFACE	URBAN RETREAT, UR 304, BRICK INSTALLAION	STRAW / BLUE 103659	50CM X 50CM	QUIET LOUNGE INSET	ALLOW \$40/SY MATERIAL COST
CPT-5	CARPET TILE	SHAW		BURNISHED PEWTER, 50516	9X36	HILLEL BORDER AND OFFICES	ALLOW \$40/SY MATERIAL COST
CPT-6	CARPET TILE	INTERFACE	WORLD WOVEN, WW895, ASHLAR INSTALLATION	HIGHLAND WEAVE, 105377	25CM X 1M	HILLEL INSET	
PT-7	WALK-OFF MAT	TANDUS CENTIVA	ASSERTIVE ACTION 04837, BRICK INSTALLATION	LEAD SHOT, 26207	24X24	ENTRY	ALLOW \$20/SY MATERIAL COST
CPT-8	CARPET TILE	SHAW	DYE LAB, 5T041, BRICK INSTALLATION	INDIGO, 41496	24X24	GREAT ROOM INSET	
	CARPET TILE	INTERFACE	ASHLAR INSTALLATION	COBALT 104240	25CM X 1M	LOBBY INSET BORDER	
CPT-10	CARPET TILE	INTERFACE	HUMAN NATURE, HN 840, ASHLAR INSTALLATION	EARTH 104227	25CM X 1M	LOBBY INSET FIELD	
	CARPET TILE	INTERFACE	PIN LINE, BRICK INSTALLATION	STRAW	50CM X 50CM	PRAYER ROOMS - INSTALLED AT 45 DEGREE ANGLE TO ROOM	
-			SHADOW PLUSH 5A127	MUSE 24110	12' 6X36		
	PORCELAIN TILE FLOOR	MOSAIC TILE	SPEAK EASY AV283, 1/3 ASHLAR INSTALLATION	SWEET GEORGIA BROWN		LOBBY / GREAT ROOM / KITCHEN / DINING	ALLOW \$8/SF MATERIAL COST
	PORCELAIN TILE FLOOR	ARCHITECTURAL CERAMICS	WOOD STOCK, 1/3 ASHLAR INSTALLATION	VANILLA	6X36	BATHROOMS	ALLOW \$6/SF MATERIAL COST
	PORCELAIN TILE FLOOR	NOVABELL IMPERIAL	HONED RECTIFIED, BRICK INSTALLATION	CREMA	24X48	ABLUTION AREAS	ALLOW \$8/SF MATERIAL COST
SCO 2-BASE	SEALED CONCRETE	-	SEALED CONCRETE			BUILDING SUPPORT/TELCOM/JANITOR	
RBB-1	RUBBER BASE WOOD BASE	JOHNSONITE	COVE BASE CHERRY, QUARTER SAWN	STAIN COLOR TBD	4" HIGH ROLL 6" HIGH X 5/8" TH.	BUILDING SUPPORT/TELCOM/JANITOR/OFFICES/CORRIDOR 000A LOBBY/CORRIDOR 101/GREAT ROOM104/KITCHEN 103/DINING 102, PRAYER ROOMS, PRAYER LOBBY, HILLEL, WORKROOM	
WDB-2	WOOD BASE		MATCH EXISTING AT CHAPEL	STAIN TO MATCH EXISTING AT CHAPEL		CHAPEL	
B-WALL		DALTILE	ELEVARE	WHITE	4X16		
	CERAMIC TILE WALL CERAMIC TILE WALL	NOVABELL IMPERIAL	PROVENZALE	CREMA	12X12 SHEET OF MOSAICS	BATHROOM WALLS ABLUTION AREA WALLS	ALLOW \$15/SF MATERIAL COST
GTW-1	GLASS TILE WALL	TILE BAR	KERRIE	KELLY BLUE		KITCHEN BACKSPLASH - FULL HEIGHT - REFER TO ELEVATIONS; DINING ROOM BACKSPLASH	ALLOW \$15/SF MATERIAL COST
	PLASTIC LAMINATE WALL PANEL	PREMIUM AEON				ELEVATOR CAB	
TWS-1	TACKABLE WALL SURFACE	FORBO BULLETIN BOARD		2206 OYSTER SHELL	6MM	LOBBY 101 CORRIDOR	
	WOOD PANELING	CUSTOM	MATCH EXISTING AT CHAPEL	STAIN TO MATCH EXISTING AT CHAPEL		CHAPEL	
4-CEILING APC-1	ACOUSTIC PANEL CEILING	ARMSTRONG	CIRRUS TEGULAR		24X24 WITH 9/16" GRID	OFFICES,CORRIDOR 000A	
	ACOUSTIC PANEL CEILING	ARMSTRONG	OPTIMA SQUARE TEGULAR		30X60 WITH 9/16" GRID	DINING, LOBBY, HILLEL	
	EXPOSED CEILING PAINTED GYPSUM WALL BOARD	- -	-	- PT-2, UNLESS OTHERWISE NOTED	-	MECH / ELEC / CUSTODIAL	
4-MISC	RECESSED SOLAR SHADE -	LUTRON	SHEER WEAVE 2390 - 5%			ALL WINDOWS, U.N.O.	
SC-1	MANUAL SHOWER CURTAIN - @ SHOWER	IINPRO CLICKEZE	SUPER BIO STAT	WHITE		SHOWER ENCLOSURE	
5-MILLWO	DRK				2014		
	QUARTZ COUNTERTOP SOLID SURFACE	ZODIAQ HI-MACS		CALACATTA NATURA IVORY WHITE S29	2CM 2CM	KITCHEN AND DINING COUNTERTOPS WINDOW SILLS	
	SOLID SURFACE	CORIAN		GLACIER ICE	2CM	ABLUTION FLOOR SINKS	
	SOLID SURFACE	CORIAN		DUNE PRIMA	2CM	WORK ROOM COUNTERTOP	
VD-1	WOOD		CHERRY, QUARTER SAWN	STAIN COLOR TBD	VARIES	COLUMN SURROUNDS, CEILING TRIM, WINDOW TRIM, BUILT-IN MILLWORK, LOBBY SCREEN	
VDT-1 S-PAINT	WOOD TREAD	WINDFALL LUMBER	CHERRY, SIDE GRAIN	STAIN COLOR TBD	1" TH.	STAIR TREADS WITH INTEGRATED METAL NOSING	
	PAINT	SHERWIN WILLIAMS		SW 7570 EGRET WHITE		WALLS THROUGHOUT, UNLESS OTHERWISE NOTED	
		SHERWIN WILLIAMS		SW 7008 ALABASTER		GYP BOARD CEILING/SOFFIT THROUGHOUT, UNLESS OTHERWISE NOTED	
	PAINT PAINT	SHERWIN WILLIAMS		SW 6531 INDIGO TBD		BATHROOM WALLS ACCENT WALLS - LOCATION TBD	
P-5	PAINT	SHERWIN WILLIAMS		TBD		ACCENT WALLS - LOCATION TBD	

6

8

9

9

7

2

3

3

2

4

5

6

7

8

4

1

1

11

10

11

10

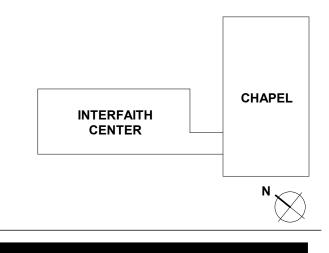
© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

FINISH SCHEDULE

DRAWING NAME

DOCUMENTS


SCALE: JOB NO.: DRAWN BY: PROJECT DESIGN PHASE **50% CONSTRUCTION**

21641.00 ASG

DRAWING INFORMATION ISSUE DATE: 04/28/17

NOT FOR CONSTRUCTION

<u>AYERS</u> <u>SAINT</u> GROSS **ARCHITECTS + PLANNERS**

REVISIONS REV. # DESCRIPTION DATE _____ -----KEY PLAN

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING

www.spexsys.com

HANOVER, MD 21076 410.712.0390

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

CIVIL ENGINEER

WBCM 300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

STRUCTURAL ENGINEER

MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

ARCHITECT

M/E/P & FIRE PROTECTION ENGINEER

1306 CONCOURSE DRIVE, SUITE 100

1021 DULANEY VALLEY RD BALTIMORE MD 21204 PROJECT TEAM

CENTER GOUCHER COLLEGE

PROJECT INFORMATION

GOUCHER —college—

GOLDSMITH INTERFAITH

		ABBREVIATION	S	
	ABD ABV	ABBREVIATION ABANDONED ABOVE	IB I.L. IN	INVERTED BUCKET TRAP INTERMEDIATE LANDING INCH OR INCHES
J	A/C AD AFF AHU	AIR CONDITIONING ACCESS DOOR ABOVE FINISHED FLOOR AIR HANDLING UNIT	INV KVA KW	INVERT ELEVATION KILOVOLT AMPERES KILOWATT
	ALUM APD	ALUMINUM AIR PRESSURE DROP & APPROXIMATE	L LAT	LENGTH LEAVING AIR TEMPERATURE
	ARCH ARRG AST	ARCHITECT, ARCHITECTURAL ARRANGEMENT ABOCEGROUND STORAGE TANK	LB(S) LDB LF	POUND(S) LEAVING DRY BULB LINEAR FEET
	ATC ATM ATR ATU	AUTOMATIC TEMPERATURE ATMOSPHERE AIR TEMPERATURE AIR TERMINAL UNIT	L.P. LVG LWB LWT	LOW PRESSURE LEAVING LEAVING WET BULB LEAVING WATER TEMPERATURE
Ŀ	AVG AWT	AVERAGE AVERAGE WATER TEMPERATURE	MAX MECH	MAXIMUM MECHANICAL
	BAS BWV BHP	BUILDING AUTOMATIC SYSTEM BACK WATER VALVE BRAKE HORSEPOWER	MBH MFR MIN	THOUSAND BTU'S PER HOUR MANUFACTURER MINIMUM
	BLDG BOP BTM	BUILDING BOTTOM OF PIPE BOTTOM	MO MS MTD	MOTOR OPERATOR MOP SINK MOUNTED
	BTUH BFP °C	BRITISH THERMAL UNITS PER HOUR BACKFLOW PREVENTER DEGREES CELSIUS	NAT NC N.C.	NATURAL NOISE CRITERIA NORMALLY CLOSED
	CAV CC CD	CONSTANT AIR VOLUME COOLING COIL CEILING DIFFUSER	NIC N.O. NO.	NOT IN CONTRACT NORMALLY OPEN NUMBER
	CFM CLG CO	CUBIC FEET PER MINUTE CEILING CLEANOUT / CARBON MONXIDE	OA OC	OUTDOOR AIR ON CENTER
	CO2 COMP CONC CONN	CARBON DIOXIDE COMPRESSED CONCRETE CONNECTION, CONNECT	OED OFD OS&Y	OPEN ENDED DUCT OVERFLOW DRAIN OUTSIDE SCREW AND YOKE
	CONN CONT CP CRU	CONNECTION, CONNECT CONTINUATION CONDENSATE PUMP CONDENSATE RETURN UNIT	PCU PD PF	PRECISION COOLING UNIT PRESSURE DROP POWER FACTOR
	CU FT CUH CX	CUBIC FEET CABINET TO EXISTING CONNECT TO EXISTING	PG PH PHC	PROPYLENE GLYCOL PHASE PREHEAT COIL
i	CW	DOMESTIC COLD WATER PIPE DRAIN OR DEPTH	PLBG PPH PPM	PLUMBING POUNDS PER HOUR (STEAM) PARTS PER MILLION
	DB DBA DBL DCP	DRY BULB OR DECIBEL DECIBAL (REFERENCE "A" SCALE) DOUBLE DIGITAL CONTROL PANEL	PRESS. PRV PSI(G) PUH	PRESSURE PRESSURE REDUCING VALVE POUNDS PER SQUARE INCH (GAGE) PROPELLER UNIT HEATER
	DDC DDC DESIG DF	DIRECT DIGITAL CONTROL DESIGNATION DRINKING FOUNTAIN	PVC QTY	POLYVINYL CHLORIDE
	DFU DIA DIFF	DRAINAGE FIXTURE UNITS DIAMETER DIFFUSER	R RA	RADIUS RETURN AIR
	DN DW DWG	DOWN DOMESTIC WATER DRAWING	RAD RD REQ'D	RADIATED ROOF DRAIN REQUIRED
	EA EAT EDB	EXHAUST AIR ENTERING AIR TEMPERATURE ENTERING DRY BULB	RH RHC RHP RL	RELATICE HUMIDITY REHEAT COIL RADIANT HEATING PANEL RAINLEADER
	EFF EG EJ	EFFICIENCY ETHYLENE GLYCOL EXPANSION JOINT	RLF RPM RPZ	RELIEF AIR REVOLUTIONS PER MINUTE REDUCED PRESSURE ZONE
	ELEC ELEV EMD	ELECTRICAL, ELECTRIC ELEVATION OR ELEVATOR END OF MAIN DRIP	RX SA	REMOVE EXISTING SUPPLY AIR
	ENT ESP ETC	ENTERING EXTERNAL STATIC PRESSURE ET CETERA	SF SH SL SP	SQUARE FEET SENSIBLE HEAT OR SHOWER SOUND LINING
	EW EWB EWC EWT	EYE WASH ENTERING WET BULB ELECTRIC WATER COOLER ENTERING WATER TEMPERATURE	SP SPEC SQ SRD	STATIC PRESSURE SPECIFICATION/PROJECT MANUAL SQUARE SECONDARY (OVERFLOW) ROOF DRAIN
	EX EXP	EXISTING EXPOSED	SRL S/S STL	SECONDARY (OVERLFOW) RAIN LEADER STAINLESS STEEL STEEL
	°F F&T FCU	DEGREES FEHRENHEIT FLOAT & THERMOSTATIC TRAP FAN COOL UNIT	TEMP	STRUCTURAL TEMPERATURE
	FCVA FD FDC FF	FLOOR CONTROL VALVE ASSEMBLY FLOOR DRAIN FIRE DEPARTMENT CONNECTION FINISHED FLOOR	TH TD THD TSP	TOTAL HEAT TRENCH DRAIN THERMODYNAMIC TRAP TOTAL STATIC PRESSURE
	FHC FHV FL	FIRE HOSE CABINET FIRE HOSE VALVE FLOOR	TYP	TYPICAL DOOR UNDER CUT
	FND FOB FOT	FOUNDATION DRAINAGE FLAT ON BOTTOM FLAT ON TOP	UH UON UST	UNIT HEATER UNLESS OTHERWISED NOTED UNDERGROUND STORAGE TANK
	FPI FPM FPS FS	FINS PER INCH FEET PER MINUTE FEET PER SECOND FLOOR SINK	V VA VAV	VOLTS VOLT AMPERES VARIABLE AIR VOLUME
	FT HD FTR	FEET O FHEAD PRESSURE FINNED TUBE RADIATION	VEL VFC VTR	VELOCITY VARIABLE FREQUENCY CONTROLLER VENT THRU ROOF
	GA GAL GALV GPH	GAGE GALLON GALVANIZED GALLONS PER HOUR	W WB WC	WIDTH WET BULB
	GPH GPM H	GALLONS PER HOUR GALLONS PER MINUTE HEIGHT	WG W/ W/O	WATER COLUMN WATER GAGE WITH WITHOUT
	HED HORIZ HP	HOSE AND DRAIN HORIZONTAL HORSEPOWER	WPD	WATER PRESSURE DROP
	H.P. HVAC HW	HIGH PRESSURE HEATING, VENTILATING & AIR CONDITIONING DOMESTIC HOT WATER PIPE		
	HWR HZ	DOMESTIC HOT WATER RECIRCULATING HERTZ		
з				
Α				

3

1

SYMBOLS

6

7

BOUNDARY LINE

VENT PIPE

SANITARY/WASTE PIPE

STORM WATER PIPE

FOUNDATION DRAIN PIPE

DOMESTIC COLD WATER PIPE

INDUSTRIAL COLD WATER PIPE

DEIONIZED WATER SUPPLY PIPE

DEIONIZED WATER RETURN PIPE

DRY-PIPE FIRE SUPPRESSION PIPE

CONDENSER WATER SUPPLY PIPE

CONDENSER WATER RETURN PIPE

HEATING WATER SUPPLY PIPE

HEATING WATER RETURN PIPE

CHILLED WATER SUPPLY PIPE

CHILLED WATER RETURN PIPE

PREACTION FIRE SUPPRESSION PIPE

CHILLED WATER (GLYCOL) SUPPLY PIPE

CHILLED WATER (GLYCOL) RETURN PIPE

PRIMARY HEATING WATER SUPPLY PIPE

PRIMARY HEATING WATER RETURN PIPE

MEDIUM PRESSURE STEAM PIPE (PSIG)

HIGH PRESSURE CONDENSATE RETURN PIPE

LOW PRESSURE CONDENSATE RETURN PIPE

HIGH TEMPERATURE HOT WATER SUPPLY PIPE

HIGH TEMPERATURE HOT WATER RETURN PIPE

MEDIUM PRESSURE CONDENSATE RETURN PIPE

HIGH PRESSURE STEAM PIPE (_PSIG)

LOW PRESSURE STEAM PIPE (PSIG)

PUMPED CONDENSATE RETURN PIPE

HUMIDIFICATION STEAM PIPE

STEAM VAPOR VENT PIPE

REFRIGERANT RELIEF PIPE

REFRIGERANT LIQUID PIPE

FUEL OIL SUPPLY PIPE

FUEL OIL RETURN PIPE

REFRIGERANT SUCTION PIPE

HOT GAS REFRIGERANT PIPE

DUAL TEMPERATURE SUPPLY

DUAL TEMPERATURE RETURN FLOW DIRECTION ARROW

NON-POTABLE WATER PIPE

TREATED WATER PIPE

TEMPERED WATER PIPE

COMPRESSED AIR PIPE

VACUUM EXHAUST PIPE

NITROUS OXIDE GAS PIPE

NITROGEN GAS PIPE

SPECIALTY GAS PIPE

OXYGEN GAS PIPE

NATURAL GAS PIPE

VACUUM PIPE

FOOD, OIL, AND GREASE WASTE PIPE

A/C CONDENSATE AND EQUIPMENT DRAIN PIPE

SECONDARY (OVERFLOW) STORM WATER PIPE

DOMESTIC HOT WATER PIPE (TEMP. IF INDICATED)

INDUSTRIAL HOT WATER PIPE (TEMP. IF INDICATED)

FIRE SUPPRESSION AND WET-PIPE SPRINKLER PIPE

DOMESTIC HOT WATER RECIRCULATING PIPE

INDUSTRIAL HOT WATER RECIRCULATING PIPE

REVERSE OSMOSIS WATER SUPPLY PIPE

REVERSE OSMOSIS WATER RETURN PIPE

CHEMICAL RESISTANT WASTE PIPE

CHEMICAL RESISTANT VENT PIPE

SANITARY PUMPED DISCHARGE PIPE

STORM WATER PUMPED DISCHARGE PIPE

5

SUPPLY AIR DUCT (UP,DOWN) RETURN/OUTDOOR/RELIEF AIR DUCT (UP,DOWN) EXHAUST AIR DUCT (UP,DOWN) FIRE DAMPER WITH ACCESS DOOR SMOKE DAMPER WITH ACCESS DOOR COMBINATION FIRE AND SMOKE DAMPER WITH ACCESS DOOR MANUAL VOLUME DAMPER FLEXIBLE CONNECTION (DUCT) SOUND ATTENUATOR SOUND LINED DUCTWORK TRANSITION ROUND TO RECTANGULAR DUCT (SIZE IN INCHES; FIRST FIGURE IS SIDE SHOWN) DUCT OFFSET UP IN DIRECTION OF ARROW DUCT OFFSET DOWN IN DIRECTION OF ARROW ROUND FLEXIBLE DUCT SUPPLY AIR TERMINAL UNIT SUPPLY AIR TERMINAL UNIT WITH REHEAT COIL FAN POWERED AIR TERMINAL UNIT WITH HEATING COIL DUCT MOUNTED REHEAT COIL SUPPLY AIR DEVICE **RETURN AIR DEVICE** EXHAUST AIR DEVICE LINEAR SLOT DIFFUSER WITH PLENUM SIDEWALL DIFFUSER W/ FIELD FABRICATED PLENUM DUCT OR WALL MOUNTED AIR DEVICE PROPELLER UNIT HEATER FINNED TUBE RADIATION OR RADIANT HEATING PANEL **RETURN AIR FLOW DIRECTION** SUPPLY AIR FLOW DIRECTION DIAMETER CUBIC FEET PER MINUTE CENTER LINE FLAT OVAL AREA DRAIN FLOOR DRAIN ROOF DRAIN/SECONDARY (OVERFLOW) ROOF DRAIN FLOOR SINK TRENCH DRAIN INVERT ELEVATION CLEANOUT IN HORIZONTAL CLEANOUT IN VERTICAL DOMESTIC WATER BACKFLOW PREVENTER BACK WATER VALVE (ARROW INDICATES DIRECTION OF FLOW) SHOCK ABSORBER HOSE BIBB NON-FREEZE CONCEALED OUTLET WALL HYDRANT TRAP PRIMER PIPE SPACE TEMPERATURE SENSOR OR THERMOSTAT SPACE HUMIDITY SENSOR OR HUMIDISTAT SPACE CARBON DIOXIDE SENSOR DUCT OR PIPE MOUNTED TEMPERATURE SENSOR/TRANSMITTER DUCT MOUNTED HUMIDITY SENSOR/TRANSMITTER DUCT MOUNTED CARBON DIOXIDE SENSOR/TRANSMITTER DUCT MOUNTED SMOKE DETECTOR FREEZESTAT CONTROL DAMPER STATIC PRESSURE SENSOR/AIR FLOW STATION FAN INLET AIR FLOW MEASURING STATION TWO WAY CONTROL VALVE THREE WAY CONTROL VALVE FLOW SWITCH DIFFERENTIAL PRESSURE SWITCH DIFFERENTIAL PRESSURE TRANSMITTER CURRENT SENSING RELAY MANUAL OVERRIDE SWITCH MAGNAHELIC PRESSURE GAGE

——SAN——
-SAN (FOG)-
CRW
——D——
——- CRV- — —
— -SW- —
— -ssw- —
– – •FND• – –
SANPD
-SWPD-
ICW-IIII
– – IHWR – – ––––– –––––––––––––––––––––––––––
TRW
TW
POS
DIS
——————————————————————————————————————
G
V
VE
N
NO
NO O SG
——————————————————————————————————————
P/A CHS
– – CHR(G) – –
CS
CR
——HS——
——HS—— – — -HR – — –
PHS
– – PHR- – –
PHR
HPR
MPS
– – MPR- – –
LPS
– — ·LPR- — –
——STM(H)——
——STM(H)—— – — •PCR• — –
VV
——————————————————————————————————————
HG FOS
-HTHWS-
– –HTHWR– –
DTS
+ THWR DTS + DTR DTR
DTS DTR
DTS
DTS DTR
DTS DTR

0011111	PIPE UP PIPE DOWN PIPE/DUCT CAP UNION FLANGED CONNECTION PIPE ANCHOR PIPE GUIDE CONCENTRIC REDUCER ECCENTRIC REDUCER
_	FLEXIBLE CONNECTION (PIPING)
ы	SHUTOFF VALVE (IN HORIZONTAL / IN VERTICAL)
-	THROTTLING VALVE
-	
	AUTOMATIC BALANCING VALVE CHECK VALVE (ARROW INDICATES DIRECTION OF FLOW)
<u> </u>	PRESSURE REDUCING VALVE
-	
<u>-</u> 9	PRESSURE RELIEF VALVE
	HOSE END DRAIN
-	PRESSURE GAGE WITH ISOLATION VALVE
	TEMPERATURE GAGE/THERMOMETER
-	FLOW METER FITTING
- 2	COMBINATION BALANCING VALVE & FLOW METER FITTING
-	PRESSURE AND TEMPERATURE PLUG
-2	AUTOMATIC AIR VENT
-	MANUAL AIR VENT
-	STRAINER WITH BLOW DOWN VALVE
-	STEAM TRAP

FIRE SUPPRESSION INDICATING VALVE W/TAMPER SWITCH FIRE DEPARTMENT VALVE ALARM CHECK VALVE

DRY PIPE VALVE DRY PIPE VALVE W/ACCELERATOR PREACTION VALVE DELUGE VALVE

FIRE SUPPRESSION FLOW SWITCH

FIRE SUPPRESSION PRESSURE SWITCH FIRE SUPPRESSION DOUBLE CHECK BACKFLOW PREVENTER

FIRE DEPARTMENT SIAMESE WALL CONNECTION FIRE DEPARTMENT SIAMESE FREESTANDING CONNECTION

WATER MOTOR GONG

PUMP

FCVA

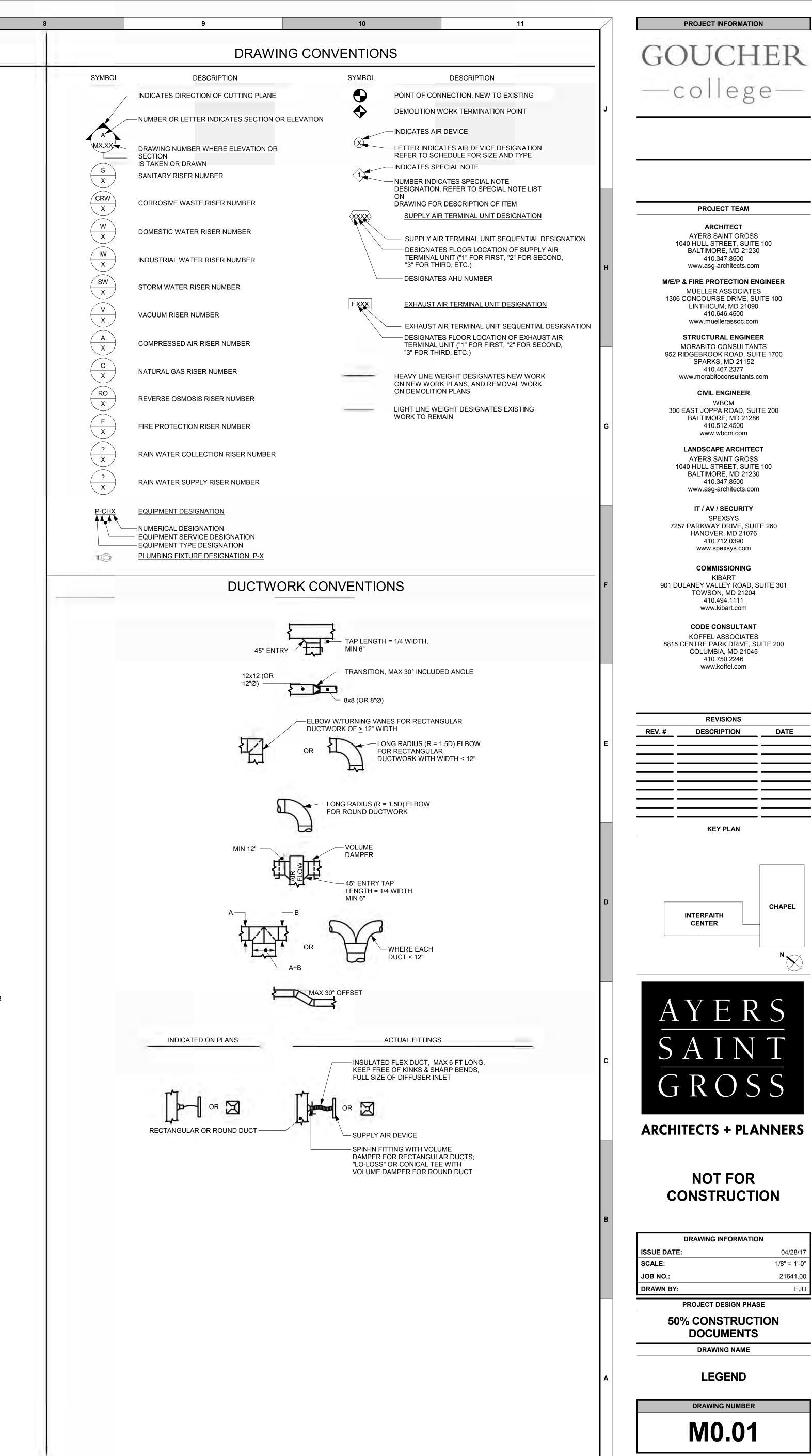
EXPOSED SPRINKLER ZONE CONTROL VALVE ASSEMBLY

(Q)

____M

3

FLOW METER


4

 \boxtimes

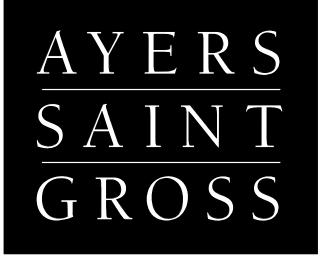
00

ह्यमि

र्धाः

© COPYRIGHT AYERS SAINT GROSS, 2017

11


DRAWING NUMBER

LEGEND

DRAWING INFORMATION				
ISSUE DATE:	04/28/17			
SCALE:	1/8" = 1'-0"			
JOB NO.:	21641.00			
DRAWN BY:	EJD			
PROJECT DESIGN PHASE				
50% CONSTRUCTION DOCUMENTS				
DRAWING NAM	IE			

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

INTERFAITH	CHAPEL
INTERFAITH CENTER	_
	N

 \mathbf{N}

REVISIONS			
	DESCRIPTION	DATE	
		•	

KEY PLAN

TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

901 DULANEY VALLEY ROAD, SUITE 301

KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

KIBART

410.712.0390 www.spexsys.com COMMISSIONING

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

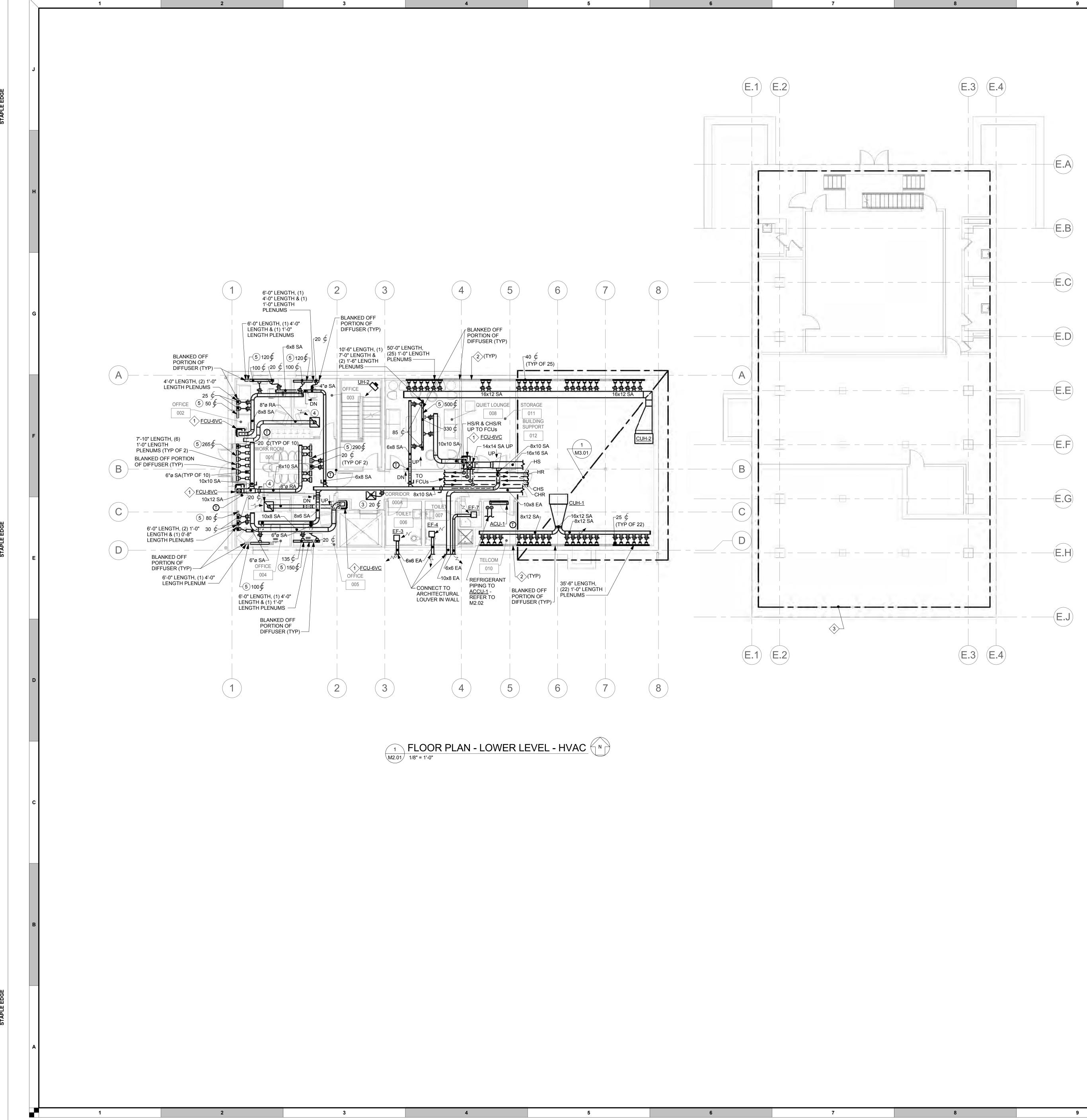
LANDSCAPE ARCHITECT AYERS SAINT GROSS

CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

300 EAST JOPPA ROAD, SUITE 200

www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS


M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

PROJECT TEAM

-college-

SPECIAL NOTES:

10

1 VERTICAL FAN COIL UNIT IN CLOSET. PROVIDE SIDE ACESS PANEL WITH INTEGRAL RETURN AIR GRILLE. 2 DIFFUSER PLENUM UP THRU FLOOR TO FLOOR-MOUNTED DIFFUSER ON GROUND FLOOR ABOVE.

11

3 HVAC WORK WITHIN THIS AREA IS NOT IN CONTRACT.

IF DRAWING IS REDUCED, USE GRAPHIC SCALE 1/8'' = 1'-0'

11

10

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

FLOOR PLAN - LOWER LEVEL -HVAC

DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE

50% CONSTRUCTION

ISSUE DATE: 04/28/17 1/8" = 1'-0" SCALE: JOB NO.: 21641.00 DRAWN BY: CBH

DRAWING INFORMATION

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

INTERFAITH CENTER	CHAPEL
	N

REVISIONS		
REV. #	DESCRIPTION	DATE
		·

KEY PLAN

410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

TOWSON, MD 21204

COMMISSIONING KIBART

410.712.0390 www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

www.asg-architects.com IT / AV / SECURITY SPEXSYS

410.347.8500

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

CIVIL ENGINEER WBCM

www.morabitoconsultants.com

410.467.2377

300 EAST JOPPA ROAD, SUITE 200

SPARKS, MD 21152

MORABITO CONSULTANTS

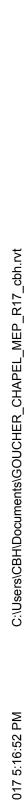
952 RIDGEBROOK ROAD, SUITE 1700

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100

www.asg-architects.com

410.347.8500


BALTIMORE, MD 21230 M/E/P & FIRE PROTECTION ENGINEER

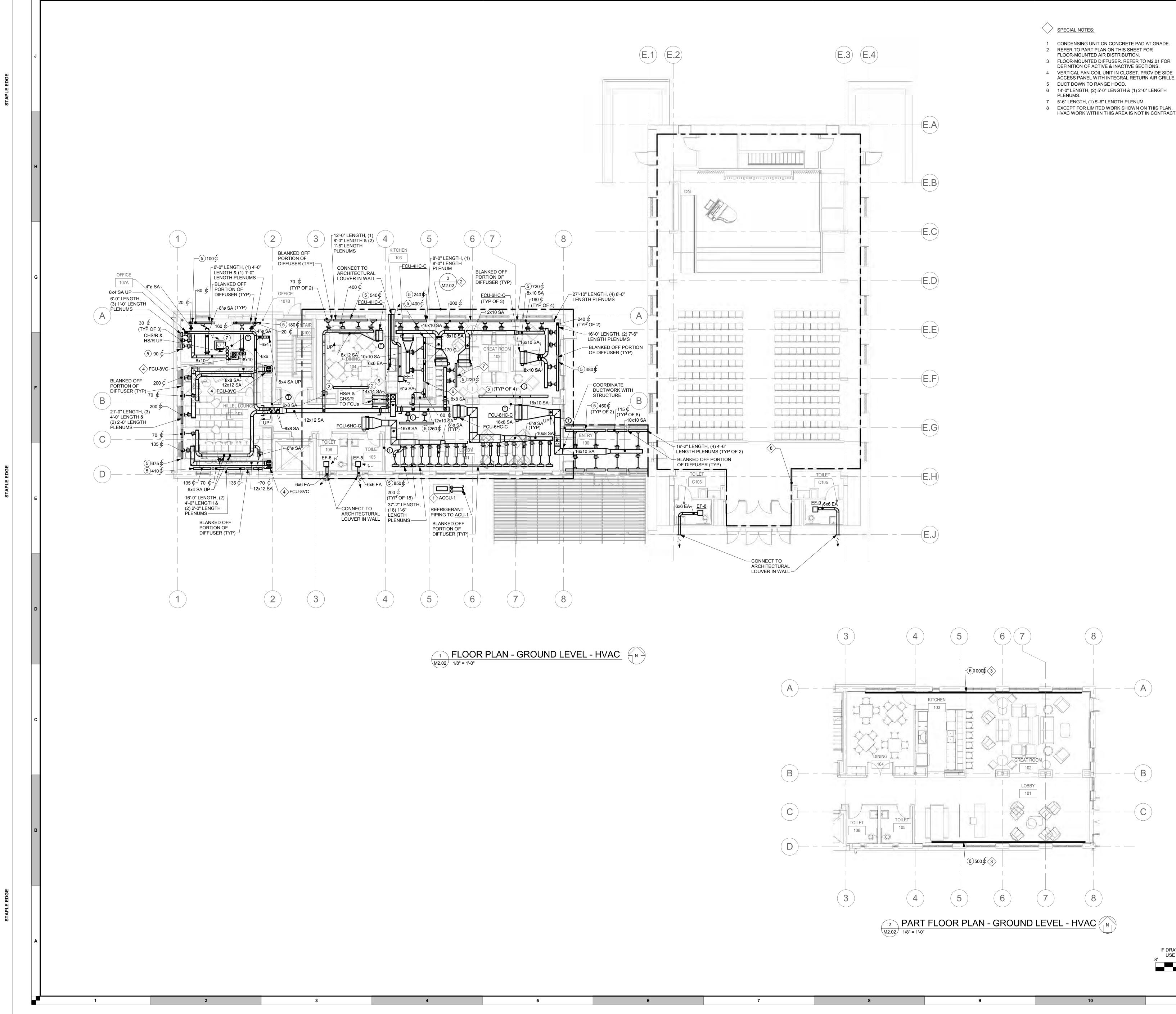
AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

ARCHITECT

PROJECT TEAM

2

3


4

5

6

7

8

10

9

1 CONDENSING UNIT ON CONCRETE PAD AT GRADE.

11

- 3 FLOOR-MOUNTED DIFFUSER. REFER TO M2.01 FOR DEFINITION OF ACTIVE & INACTIVE SECTIONS.
- ACCESS PANEL WITH INTEGRAL RETURN AIR GRILLE
- 6 14'-0" LENGTH, (2) 5'-0" LENGTH & (1) 2'-0" LENGTH
- 8 EXCEPT FOR LIMITED WORK SHOWN ON THIS PLAN,

IF DRAWING IS REDUCED, USE GRAPHIC SCALE

11

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

FLOOR PLAN - GROUND LEVEL - HVAC

DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION **ISSUE DATE:** 04/28/17 1/8" = 1'-0' SCALE: JOB NO.: 21641.00 DRAWN BY: CBH

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

INTERFAITH CENTER	CHAPEL
	N XXX

REVISIONS		
REV. #	DESCRIPTION	DATE
		·

KEY PLAN

www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING KIBART TOWSON, MD 21204 410.494.1111

www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

410.712.0390

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

IT / AV / SECURITY

www.asg-architects.com

410.347.8500

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

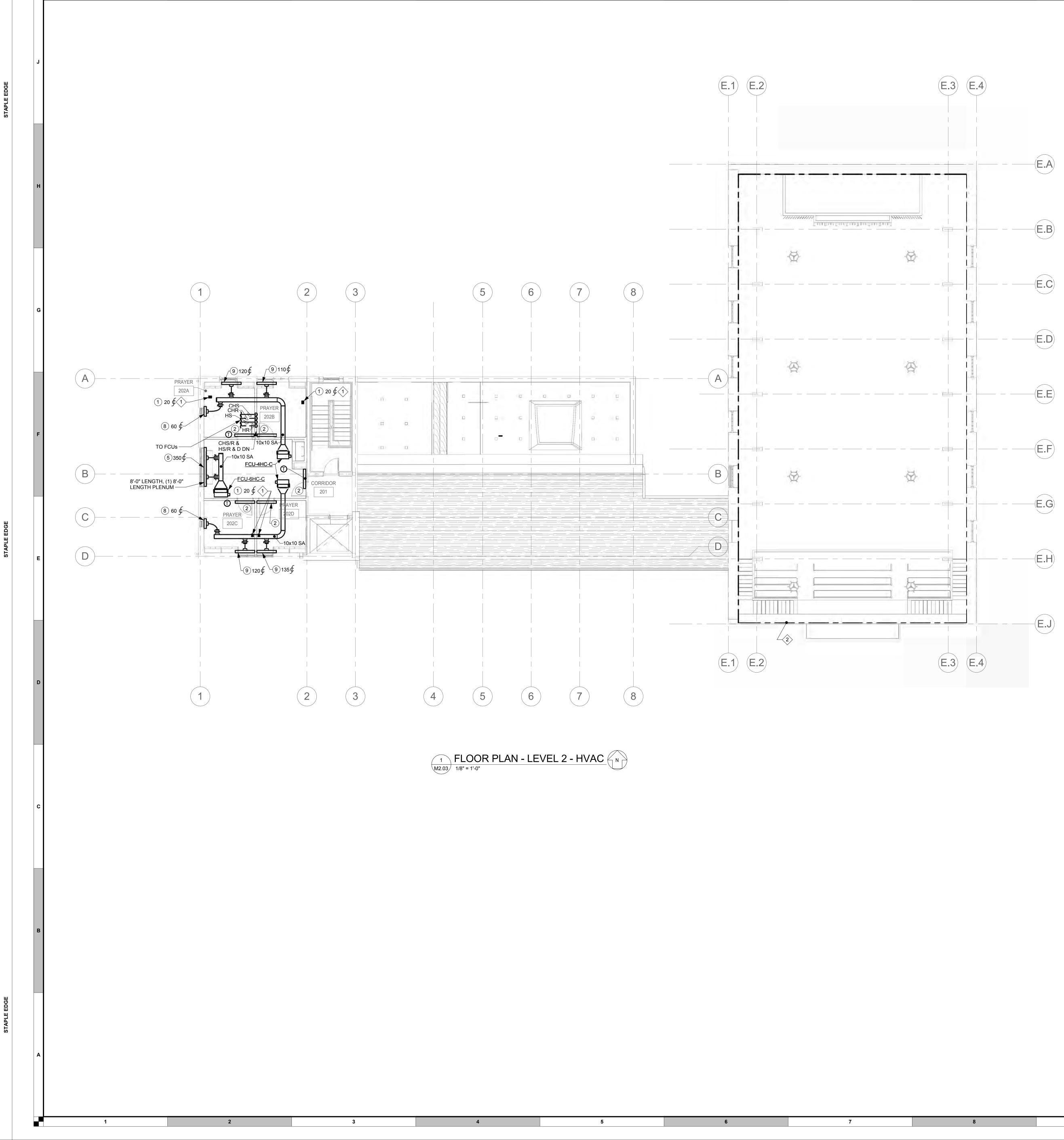
CIVIL ENGINEER WBCM BALTIMORE, MD 21286

www.morabitoconsultants.com 300 EAST JOPPA ROAD, SUITE 200

410.467.2377

SPARKS, MD 21152

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700


MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

PROJECT TEAM

2

3

4

5

6

7

8

SPECIAL NOTES:

9

9

1 FLOOR-MOUNTED GRILLE. 2 HVAC WORK WITHIN THIS AREA IS NOT IN CONTRACT. 11

10

IF DRAWING IS REDUCED, USE GRAPHIC SCALE 1/8" = 1'-0"

11

10

© COPYRIGHT AYERS SAINT GROSS, 2017

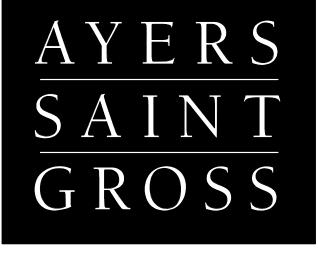
DRAWING NUMBER

FLOOR PLAN - LEVEL 2 - HVAC

DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE **50% CONSTRUCTION**

JOB NO.: DRAWN BY:


ISSUE DATE:

SCALE:

DRAWING INFORMATION 04/28/17 1/8" = 1'-0" 21641.00 CBH

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

INTERFAITH CENTER	CHAPEL
	N

REVISIONS		
REV. #	DESCRIPTION	DATE
		•

KEY PLAN

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

COMMISSIONING KIBART

www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

HANOVER, MD 21076 410.712.0390

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

www.asg-architects.com IT / AV / SECURITY

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

CIVIL ENGINEER WBCM

www.morabitoconsultants.com

410.467.2377

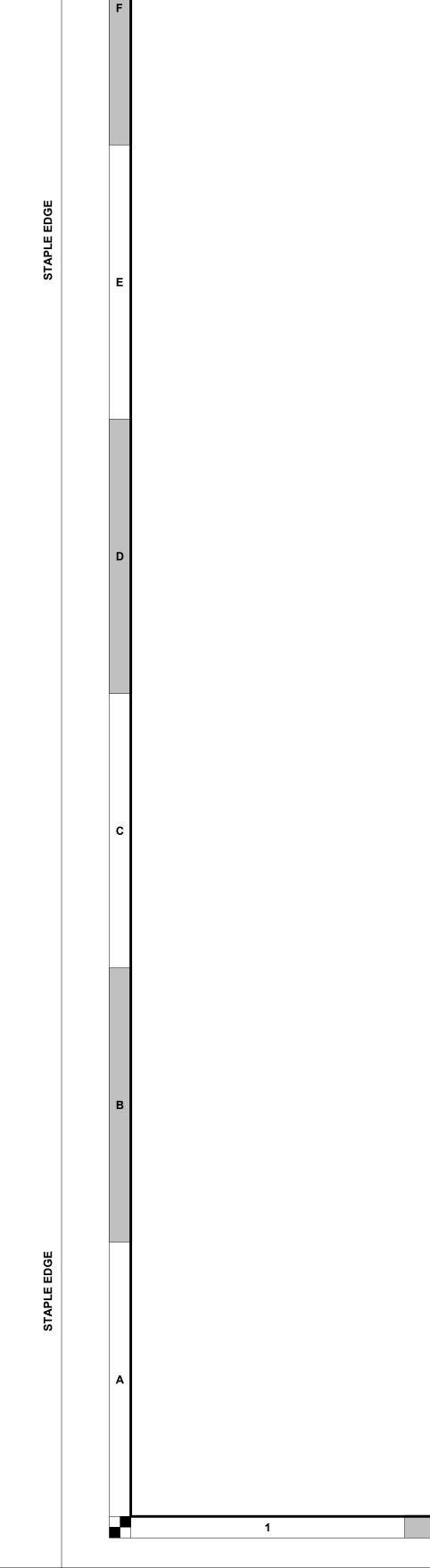
300 EAST JOPPA ROAD, SUITE 200

SPARKS, MD 21152

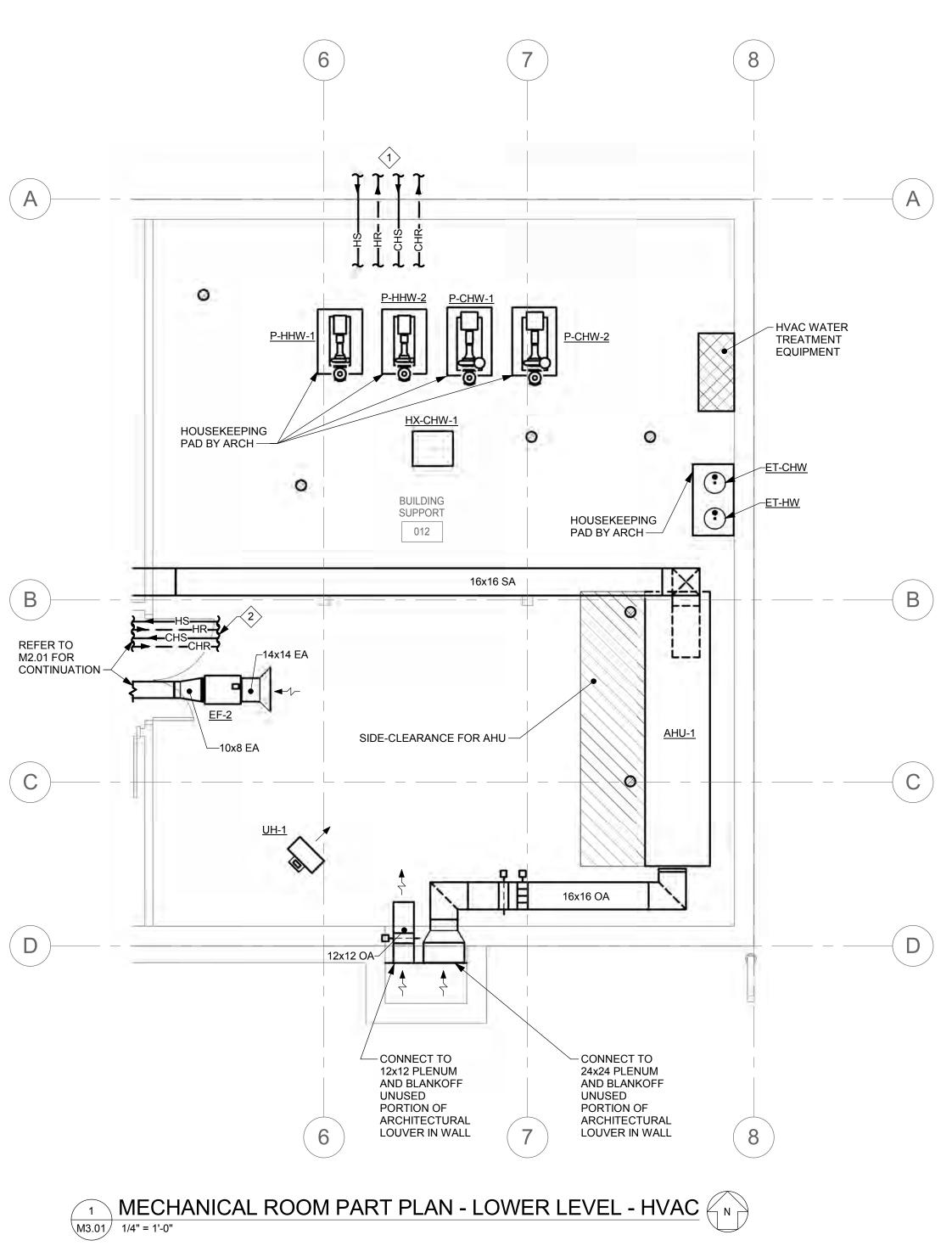
952 RIDGEBROOK ROAD, SUITE 1700

410.347.8500 www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500

www.muellerassoc.com


STRUCTURAL ENGINEER MORABITO CONSULTANTS

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230


PROJECT TEAM

2

4

5

5

4

6

7

7

6

8

3

2

3

SPECIAL NOTES:

9

9

1 TO CAMPUS DISTRIBUTION LOOP - REFER TO CIVIL DRAWINGS FOR CONTINUATION.

10

11

2 TO/FROM SYSTEM PUMPS - REFER TO SCHEMATICS FOR PIPING CONFIGURATION.

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

IF DRAWING IS REDUCED, USE GRAPHIC SCALE

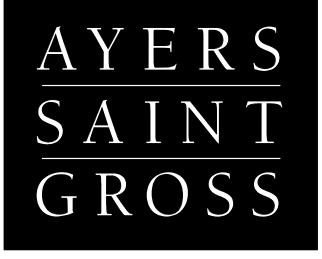
1/4" = 1'-0"

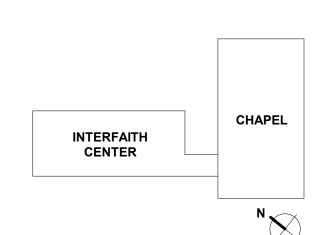
11

10

MECHANICAL ROOM PART PLAN - LOWER LEVEL - HVAC

DOCUMENTS DRAWING NAME


PROJECT DESIGN PHASE


50% CONSTRUCTION

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: 1/4" = 1'-0" JOB NO.: 21641.00 DRAWN BY: CBH

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

REVISIONS		
REV. #	DESCRIPTION	DATE
	KEY PLAN	

TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

KIBART

COMMISSIONING

901 DULANEY VALLEY ROAD, SUITE 301

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER SPARKS, MD 21152

LINTHICUM, MD 21090 MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

1306 CONCOURSE DRIVE, SUITE 100

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

PROJECT TEAM

ARCHITECT

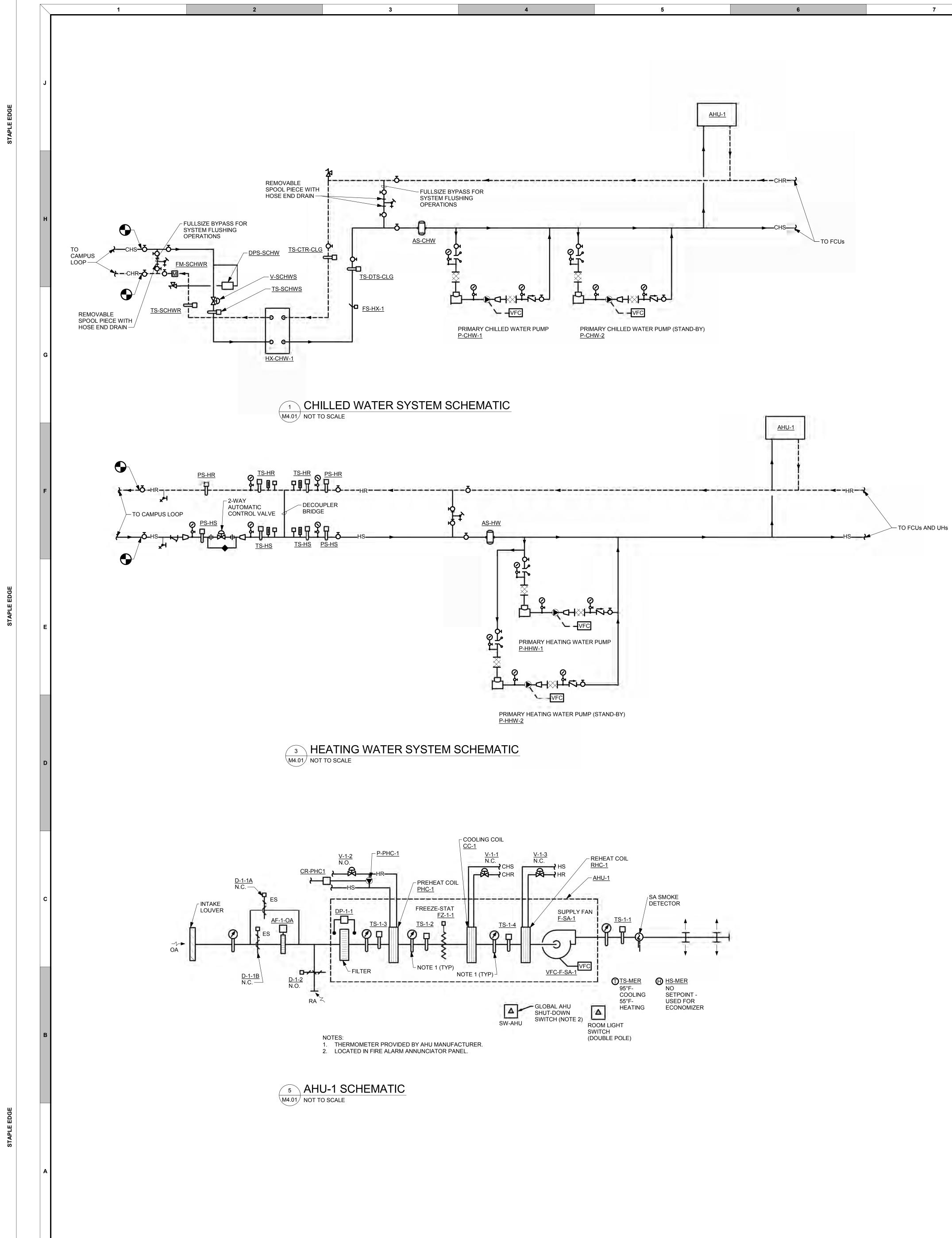
AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500 www.asg-architects.com

PROJECT INFORMATION

GOUCHER

—college—


410.467.2377

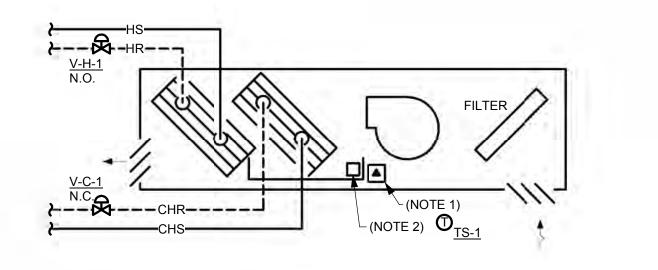
www.morabitoconsultants.com

CIVIL ENGINEER

WBCM

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286

4


5

6

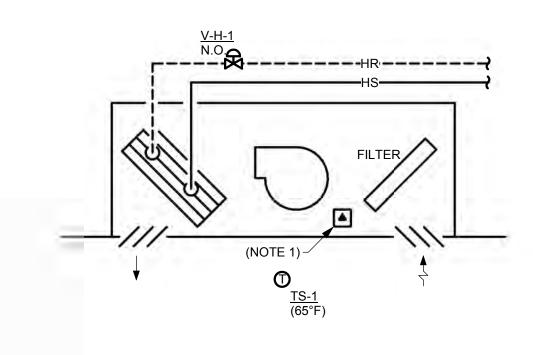
7

3

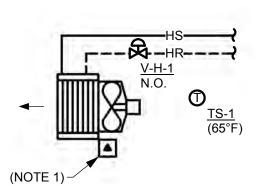
2

9

10


11

NOTES:


8

1. SPEED SWITCH FURNISHED BY UNIT MANUFACTURER. 2. CONDENSATE PAN OVERFLOW SWITCH <u>OS-1</u> FURNISHED BY UNIT MANUFACTURER.

2 FAN COIL UNIT M4.01 NOT TO SCALE

NOTES: 1. SPEED SWITCH FURNISHED BY UNIT MANUFACTURER. 4 HYDRONIC CABINET UNIT HEATER M4.01 NOT TO SCALE

NOTES:

1. SPEED SWITCH FURNISHED BY UNIT MANUFACTURER.

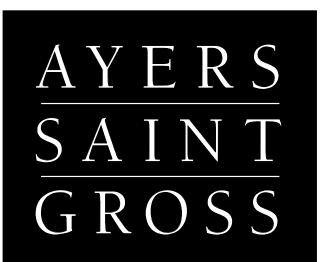
6 HYDRONIC PROPELLER UNIT HEATER M4.01 NOT TO SCALE

9

© COPYRIGHT AYERS SAINT GROSS, 2017

11

10


SCHEMATICS

50% CONSTRUCTION DOCUMENTS
 DRAWING NAME

DRAWING INFORMATION			
ISSUE DATE:	04/28/17		
SCALE:	1/8" = 1'-0"		
JOB NO.: 21641.00			
DRAWN BY: CBH			
PROJECT DESIGN PHASE			
50% CONSTRUCTION			

NOT FOR CONSTRUCTION

INTERFAITH CENTER	CHAPEL
	N

 \sum

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

KIBART

COMMISSIONING

www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

www.asg-architects.com IT / AV / SECURITY SPEXSYS

410.347.8500

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

LANDSCAPE ARCHITECT

CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

www.morabitoconsultants.com

410.467.2377

300 EAST JOPPA ROAD, SUITE 200

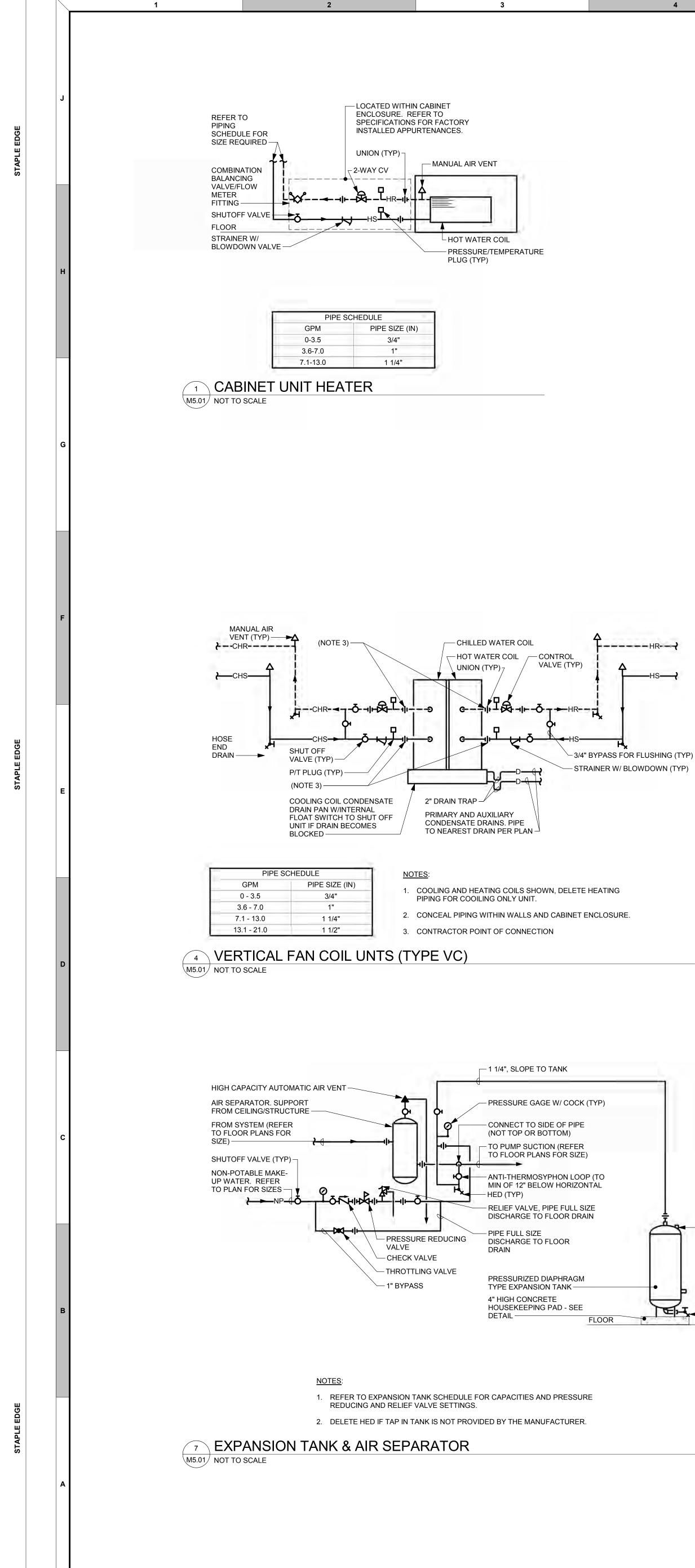
SPARKS, MD 21152

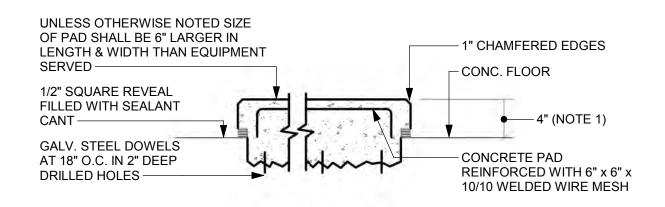
MORABITO CONSULTANTS

STRUCTURAL ENGINEER 952 RIDGEBROOK ROAD, SUITE 1700

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

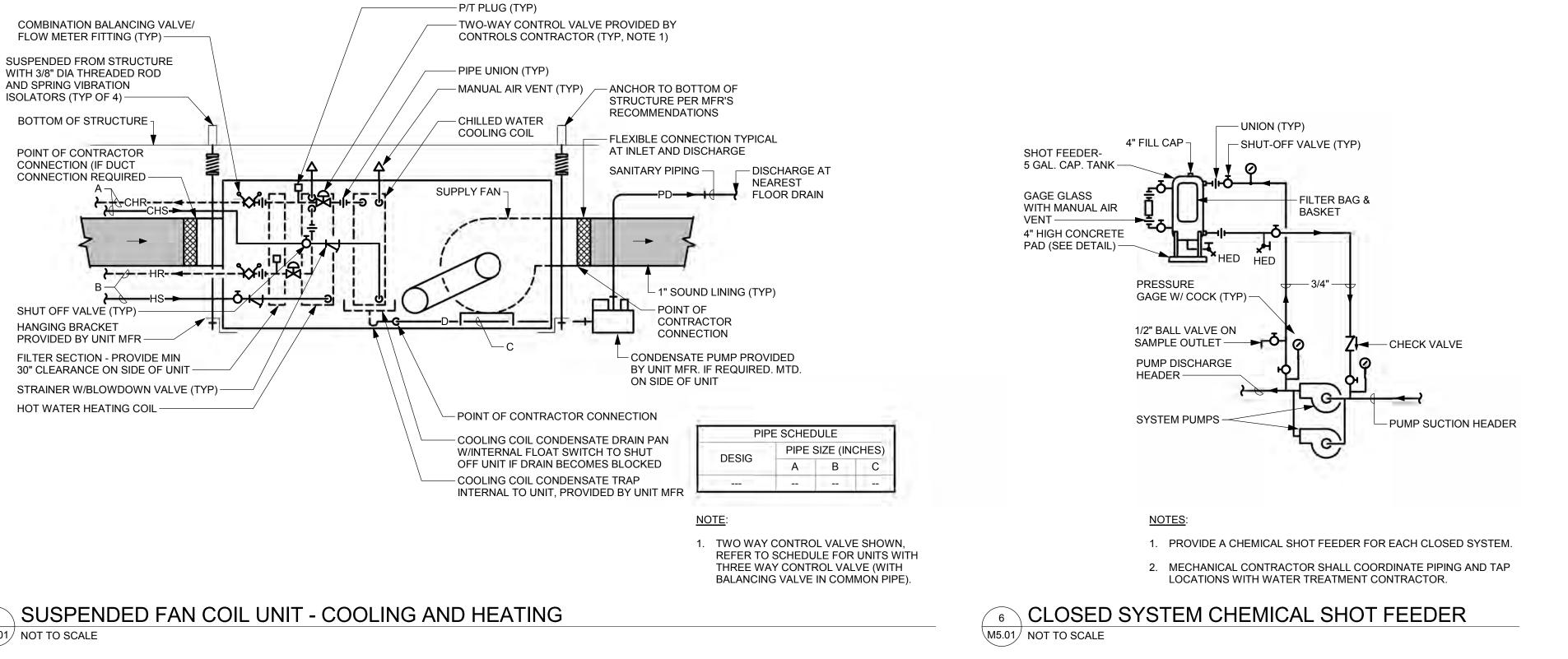
PROJECT TEAM


ARCHITECT


AYERS SAINT GROSS

1040 HULL STREET, SUITE 100

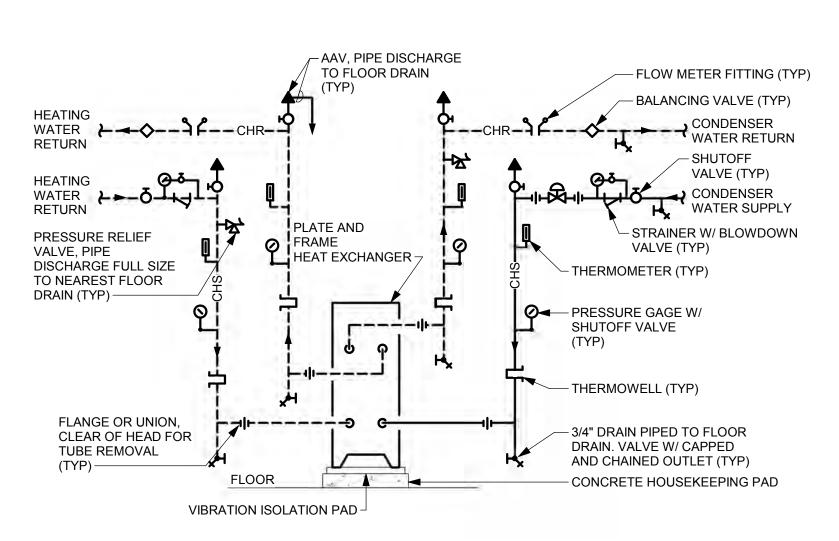
BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com



6

7

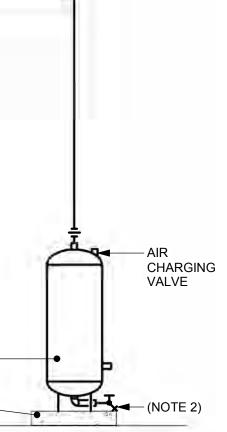
NOTE: 1. FOR AIR HANDLING UNITS, INCREASE HOUSEKEEPING PAD HEIGHT TO ALLOW CONDENSATE TRAP INSTALLATION - REFER TO CONDENSATE DRAIN DETAIL. HOUSEKEEPING PAD HEIGHT SHALL NOT EXCEED 6" WITHOUT WRITTEN APPROVAL FROM THE ARCHITECT.


² CONCRETE HOUSEKEEPING PAD M5.01/ NOT TO SCALE

8

9

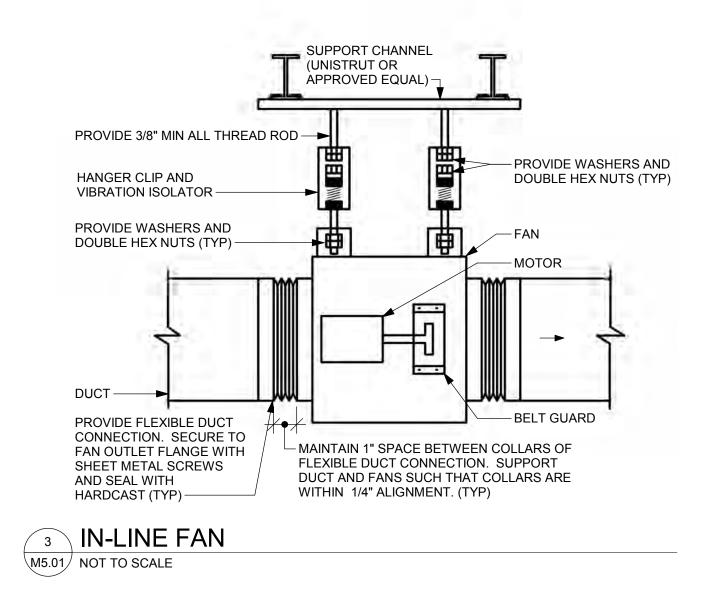
5 SUSPENDED FAN COIL UNIT - COOLING AND HEATING M5.01 NOT TO SCALE


NOTES:

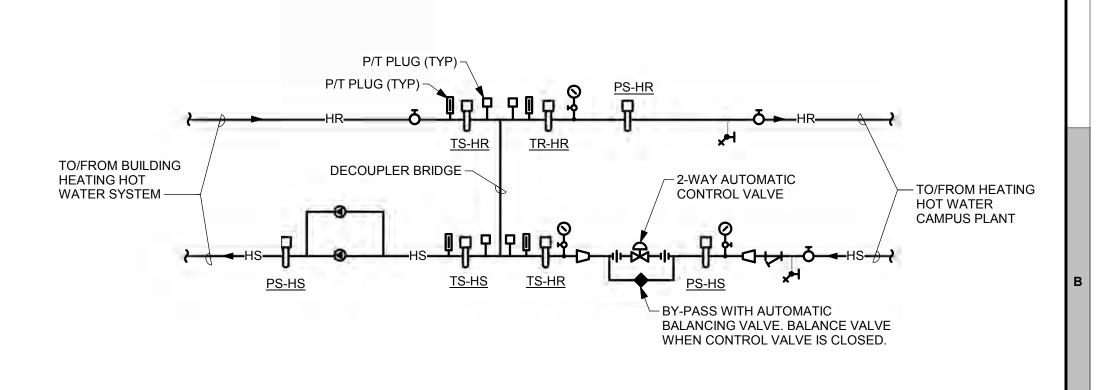
5

1. ALL PIPING SHALL BE ARRANGED TO ALLOW REMOVAL OF PLATE FIN SECTIONS FOR CLEANING OR ADDING ADDITIONAL PLATES WITHOUT DISTURBANCE TO PIPING.

2. HEAT EXCHANGERS TO BE PIPED IN A COUNTER FLOW ARRANGEMENT AS INDICATED IN MANUFACTURER'S INSTALLATION INSTRUCTIONS.


[®] PLATE AND FRAME WATER-TO-WATER HEAT EXCHANGER M5.01 NOT TO SCALE

4


4

5

10

11

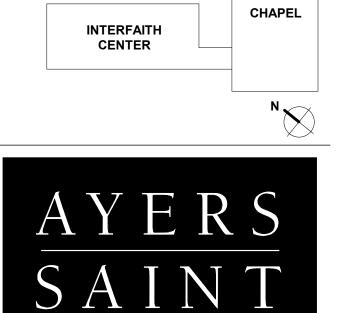
HEATING WATER DECOUPLER BRIDGE M5.01 NOT TO SCALE

9

© COPYRIGHT AYERS SAINT GROSS, 2017

11

DRAWING NUMBER


DETAILS

DRAWING NAME

DRAWING INFORMATION **ISSUE DATE:** 04/28/1 SCALE: 1/8" = 1'-0 JOB NO.: 21641.00 **DRAWN BY:** CBH PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS

NOT FOR CONSTRUCTION

KEY PLAN	

DESCRIPTION REV. # DATE

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES

COLUMBIA, MD 21045

8815 CENTRE PARK DRIVE, SUITE 200

410.750.2246

www.koffel.com

REVISIONS

HANOVER, MD 21076 410.712.0390 www.spexsys.com COMMISSIONING

GOUCHER -college-

PROJECT INFORMATION

PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS

1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

410.646.4500

www.muellerassoc.com

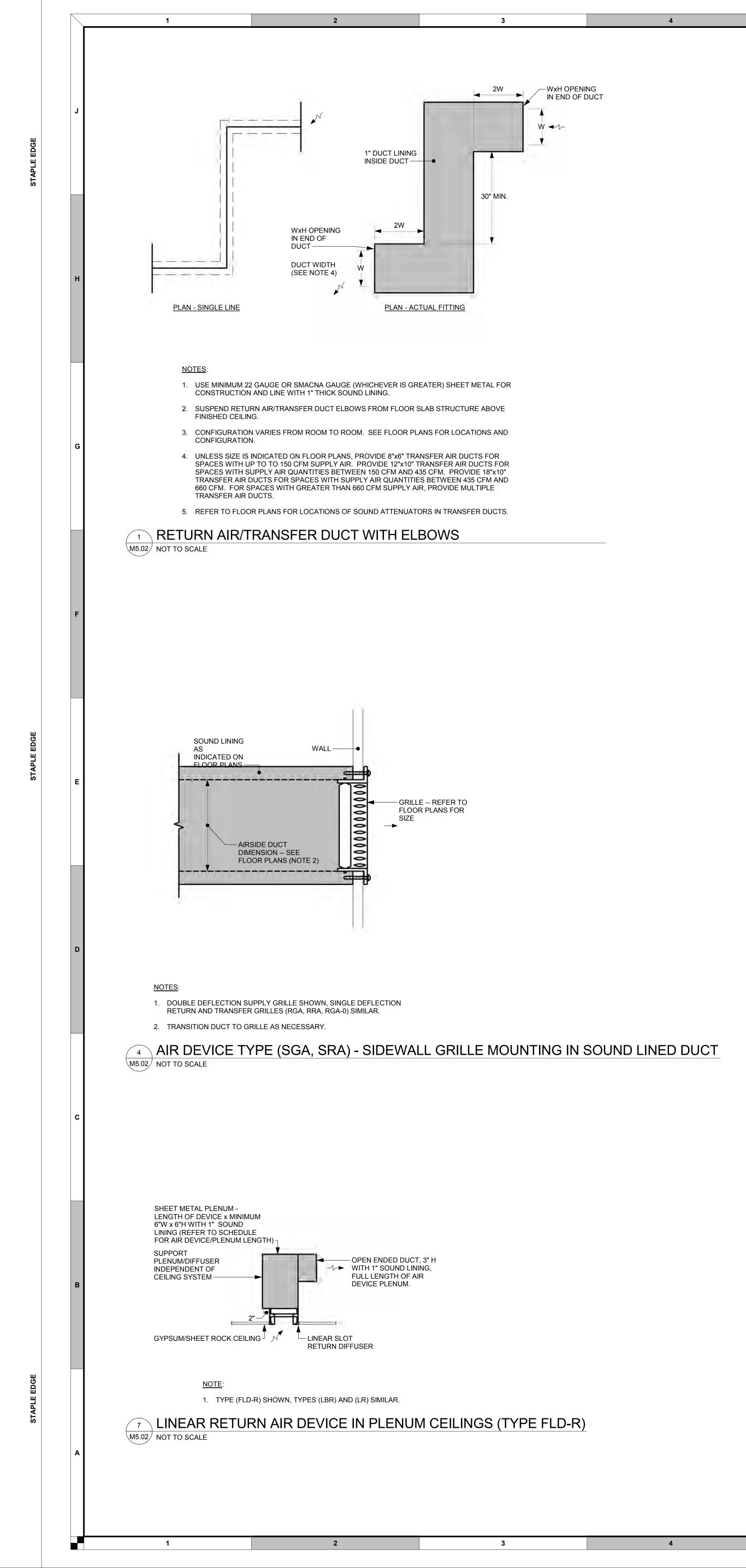
STRUCTURAL ENGINEER

MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152

410.467.2377

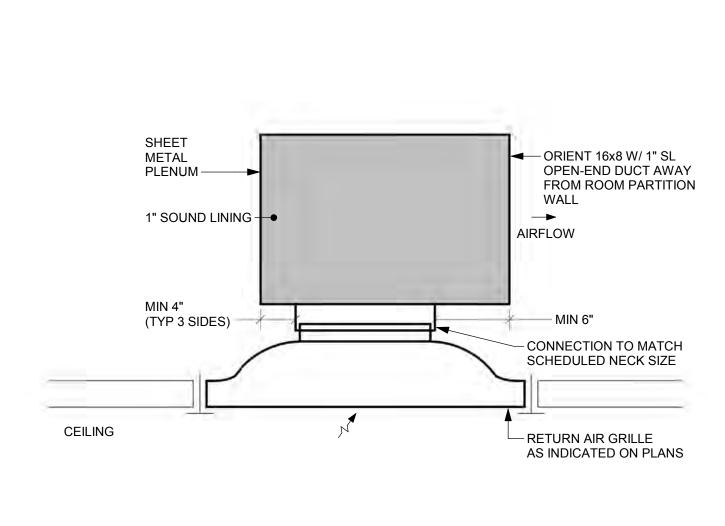
www.morabitoconsultants.com

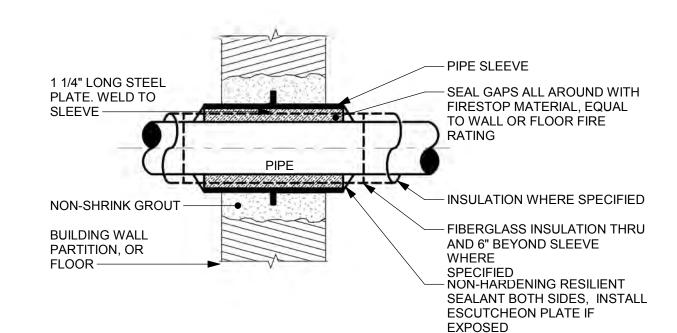

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

IT / AV / SECURITY

SPEXSYS


7257 PARKWAY DRIVE, SUITE 260



<u>NOTE</u>:

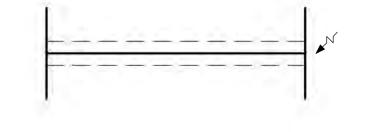
5

5 MASONRY WALL AND FLOOR PENETRATION M5.02 NOT TO SCALE

SHALL INCREASE TO 24". REFER TO FLOOR PLANS FOR LOCATION OF TRANSFERS WITH GRILLES. ² RETURN AIR/TRANSFER DUCT WITHOUT ELBOWS M5.02 NOT TO SCALE

CONSTRUCTION AND LINE WITH 1" THICK SOUND LINING.

4. REFER TO FLOOR PLANS FOR SIZE OF DUCT.

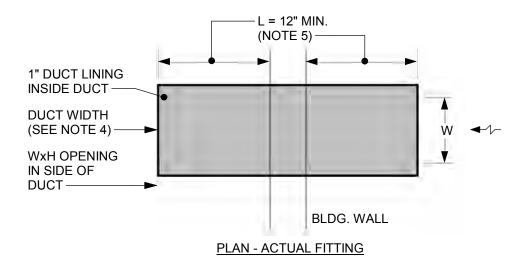

1. USE MINIMUM 22 GAUGE OR SMACNA GAUGE (WHICHEVER IS GREATER) SHEET METAL FOR

3. CONFIGURATION VARIES FROM ROOM TO ROOM. SEE FLOOR PLANS FOR LOCATIONS AND

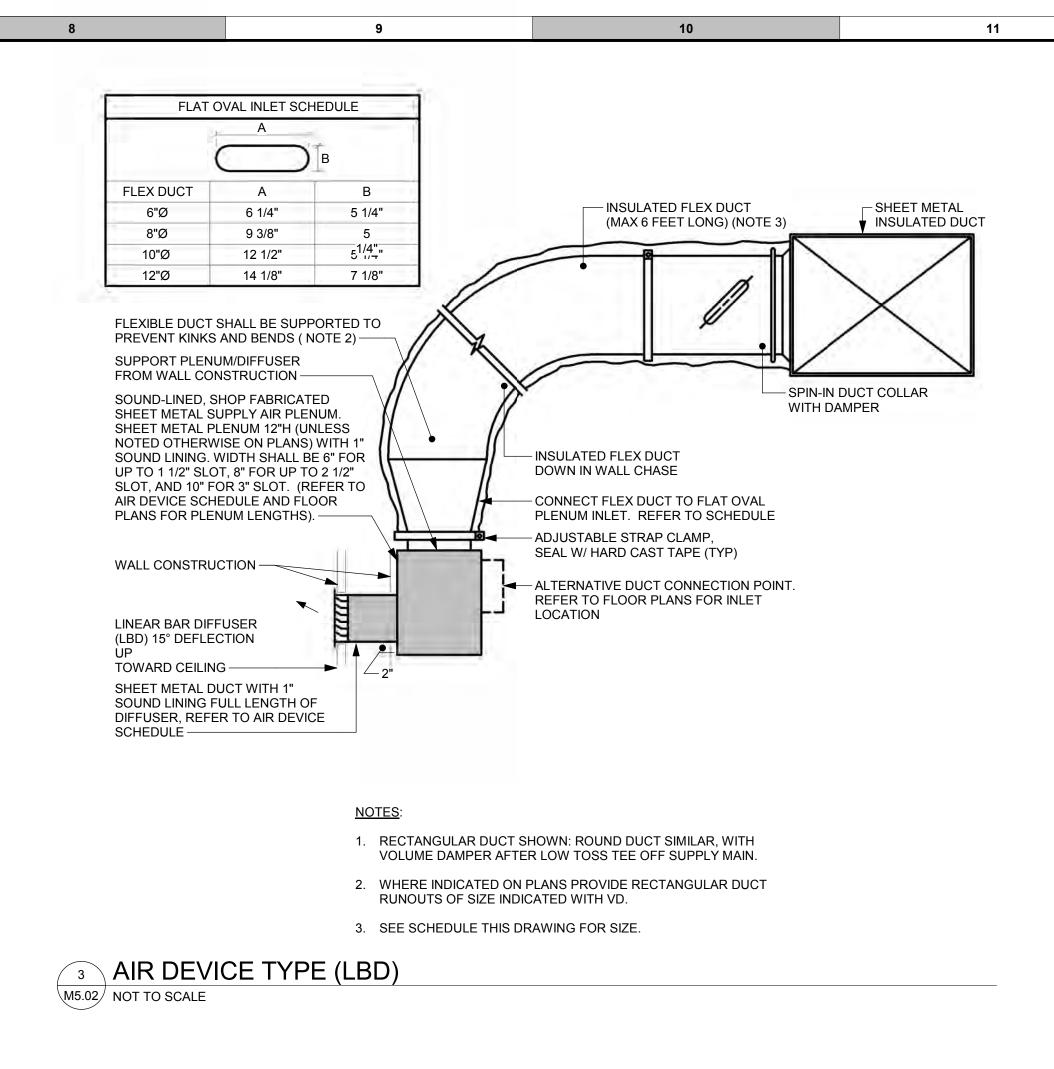
2. SUSPEND RETURN AIR/TRANSFER DUCT FROM FLOOR SLAB STRUCTURE ABOVE FINISHED CEILING.

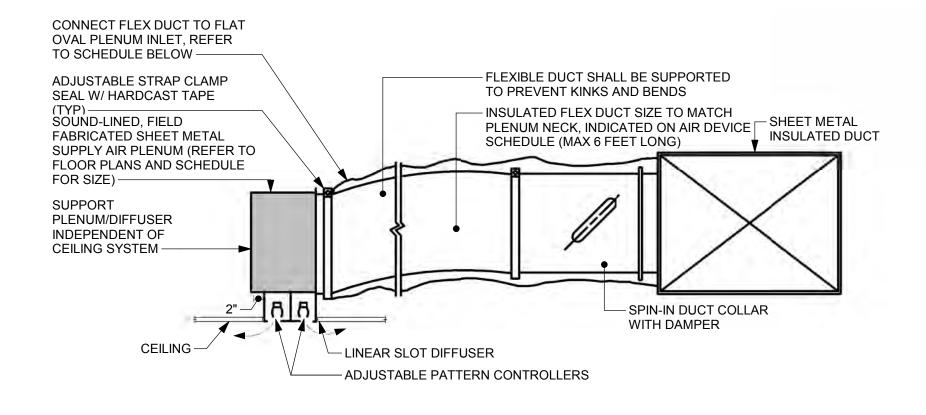
5. FOR TRANSFER DUCTS WITH GRILLES AT WALLS, LENGTH OF OPEN ENDED DUCT FROM BUILDING (L)

6



PLAN - SINGLE LINE


NOTES:


CONFIGURATION.

5

7

NOTES:

1. RECTANGULAR DUCT SHOWN; ROUND DUCT SIMILAR, WITH VOLUME DAMPER AFTER LOW LOSS TEE OFF SUPPLY MAIN.

2. AIR DEVICE TYPE (LS) SHOWN, (PSD) SIMILAR EXCEPT FACTORY FABRICATED PLENUM IS PROVIDED BY AIR DEVICE MANUFACTURER AND DEVICE DESIGNED FOR LAY-IN CEILINGS.

FLAT (OVAL INLET SCH	EDULE
FLEX DUCT		B
6"Ø	6 1/4"	5 1/4"
8"Ø	9 3/8"	5
10"Ø	12 1/2"	5 ^{1/4"} "
12"Ø	14 1/8"	7 1/8"

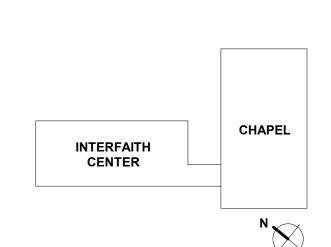
⁶ LINEAR SLOT AIR DEVICE TYPE (LS) M5.02 NOT TO SCALE

9

© COPYRIGHT AYERS SAINT GROSS, 2017

11

DRAWING NUMBER


DETAILS

DRAWING NAME

DRAWING INFORMATION **ISSUE DATE:** 04/28/1 SCALE: 1/8" = 1'-0 JOB NO.: 21641.00 DRAWN BY: CBH PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

IT / AV / SECURITY SPEXSYS

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100

PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS

1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

410.347.8500

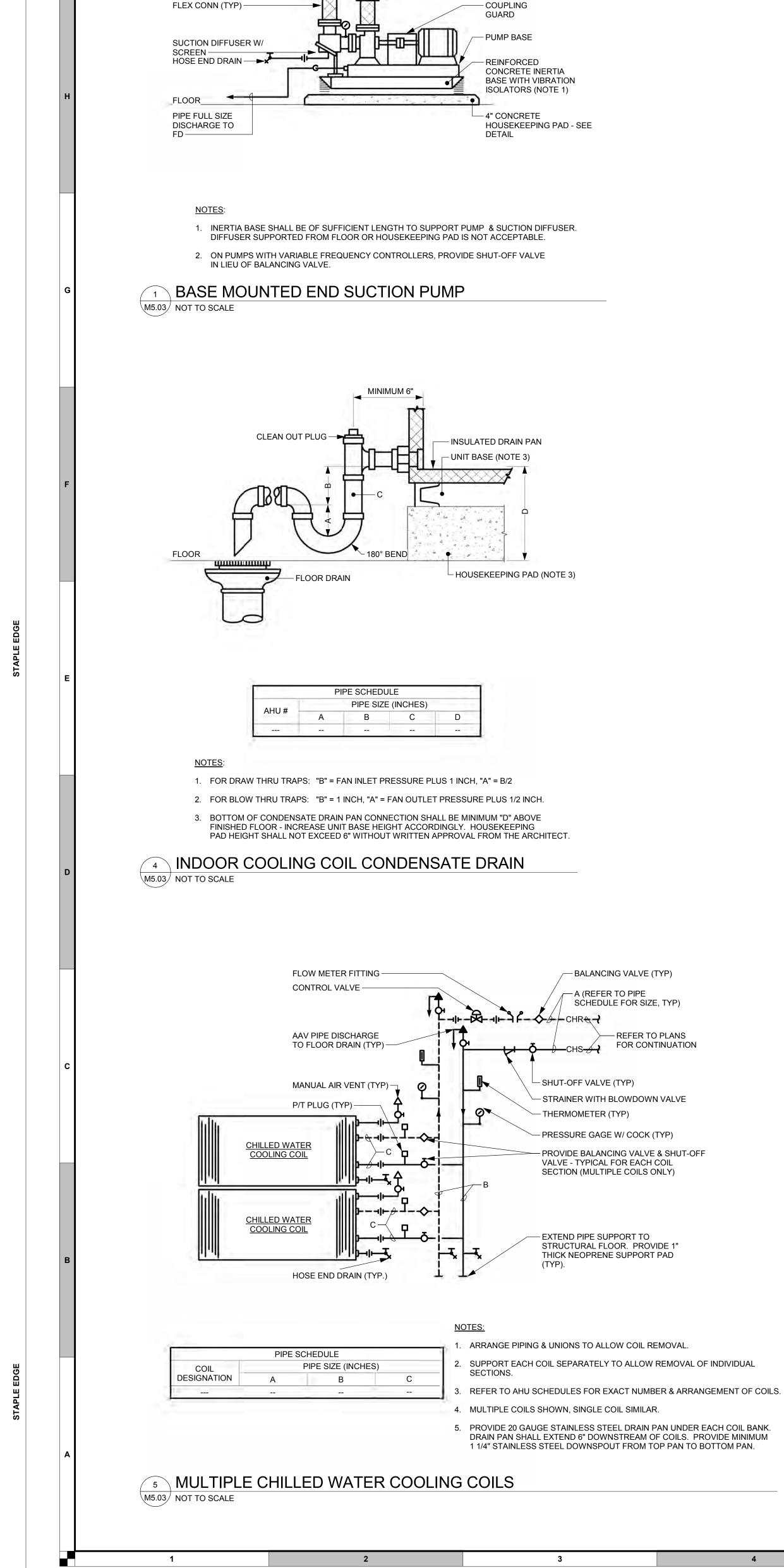
www.asg-architects.com

952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

410.467.2377

www.morabitoconsultants.com **CIVIL ENGINEER** WBCM


BALTIMORE, MD 21286

300 EAST JOPPA ROAD, SUITE 200

GOUCHER

PROJECT INFORMATION

-college-

PIPE HANGER W/

SHUT-OFF VALVE —

PRESSURE GAGE W/ COCK

TYP) —

(TYP) —

VIBRATION ISOLATOR

2

3

- SEE PLANS FOR PIPE

SIZES & SERVICES

- THERMOMETER

VALVE (NOTE 2)

SPRING LOADED

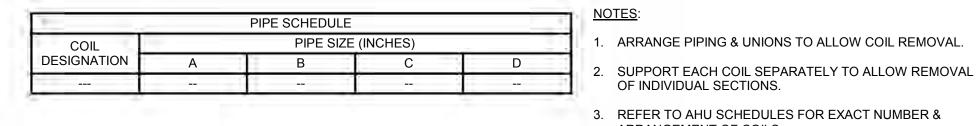
- CHECK VALVE

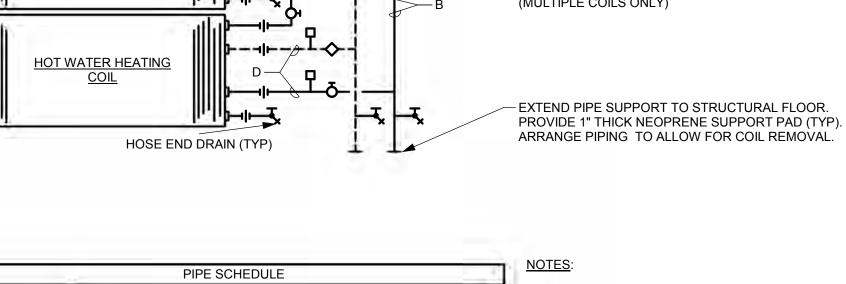
- BALANCING

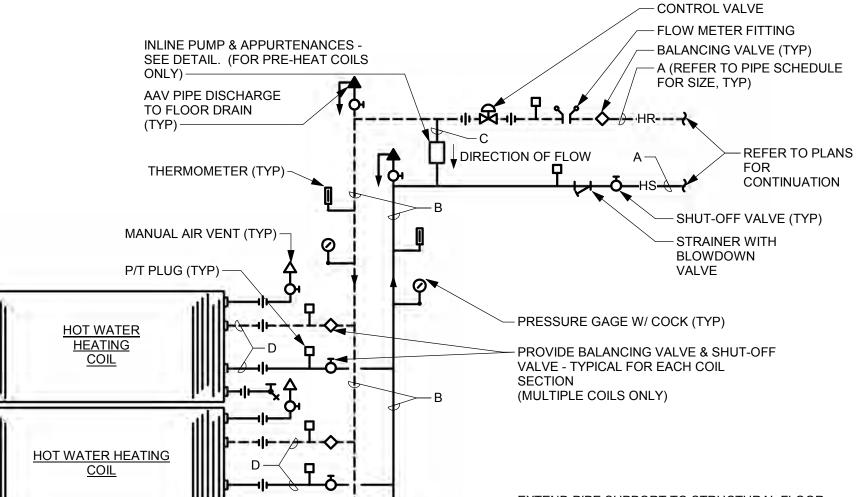
4

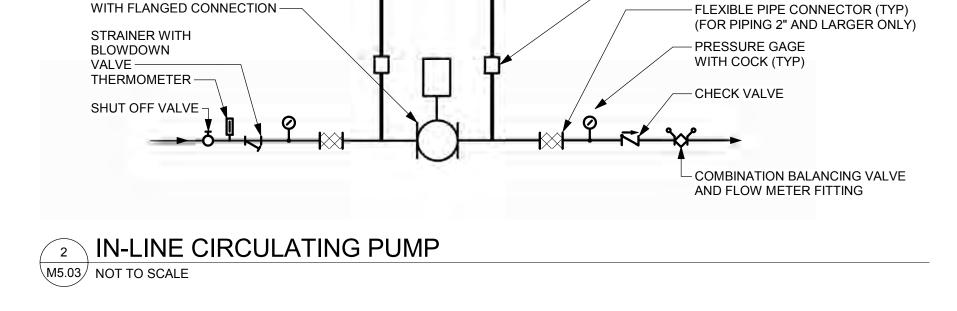
5

IN-LINE CIRCULATING PUMP


4


⁶ MULTIPLE HEATING HOT WATER COILS M5.03 NOT TO SCALE


5


3. REFER TO AHU SCHEDULES FOR EXACT NUMBER & ARRANGEMENT OF COILS. 4. MULTIPLE COILS SHOWN, SINGLE COIL SIMILAR.

6

7

– PROVIDE HANGER RODS

SECURE TO STRUCTURE

- VIBRATION ISOLATOR -

SEE SPEC (TYP)

8

	REFER TO PIPE SCHEDULE FOR PIPE SIZE
P/T PLUG (TYP)	MANUAL AIR VENT
STRAINER W/	3/8" HANGER RODS
BLOWDOWN VALVE	VIBRATION ISOLATOR - SEE SPEC
SHUT-OFF VALVE	
A wet	DISCHARGE LOUVER
COMBINATION	
BALANCING VALVE & FLOW FITTING	
ATC VALVE	and a second
HOSE END DRAIN	
PIPE	E SCHEDULE
GPM	PIPE SIZE (IN)
0-3.5	3/4"
3.6-7.0	1"
7.1-13.0	1 1/4"
3 HOT WATER UNIT HE	EATERS
M5.03 NOT TO SCALE	

10

11

9

9

© COPYRIGHT AYERS SAINT GROSS, 2017

11

10

DRAWING NUMBER

DETAILS

ISSUE DATE: 04/25/17 SCALE: 1/8" = 1'-0' JOB NO.: 21641.00 DRAWN BY: CBH PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS DRAWING NAME

DRAWING INFORMATION

AYERS SAINT GROSS

REV. #	DESCRIPTION	DATE
	KEY PLAN	

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

REVISIONS

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

IT / AV / SECURITY

www.morabitoconsultants.com **CIVIL ENGINEER** WBCM BALTIMORE, MD 21286 410.512.4500

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

1306 CONCOURSE DRIVE, SUITE 100

SPARKS, MD 21152

410.467.2377

300 EAST JOPPA ROAD, SUITE 200

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

PROJECT INFORMATION GOUCHER —college—

8	
R17	
MEP R	
GOUCHER CHAPEL MEP R17	
CHA	
CHER	
\GOU	
nents	
Docur	
CBH	
Jsers/	
C:\L	
ЫΜ	
17:50 PM	
2017 5:1	
2	

		1
STAPLE EDGE	J	DESIG TYPE (SEE SPEC) AHU-1 NOTES: 1. COIL CAPACITIES SHALL BE E 2. UNIT INTERNAL STATIC PRESE
	Н	
	G	
	F	
STAPLE EDGE	E	
	D	
	С	
	в	
STAPLE EDGE	A	
		1

NOTES: 1. EXTERNAL STATIC PRESSURE DESIG SPEC TYPE FOLHACO HO FOLHACO HO <t< th=""><th></th><th>GENERA SERVICE BUILDING VENTILATION ING AT SCHEDULED MAXIMI ALLOWANCE FOR SYSTEM</th><th>TOTAL (C (C MAX 1500</th><th></th><th></th><th></th><th>R.</th></t<>		GENERA SERVICE BUILDING VENTILATION ING AT SCHEDULED MAXIMI ALLOWANCE FOR SYSTEM	TOTAL (C (C MAX 1500				R.
					1. EXTERNAL DESIG FCU-4HC-0 FCU-6HC-0 FCU-8HC-0 FCU-8VC FCU-8VC	SPEC TYPE C HC C HC C HC VC VC VC VC	

3

2

4

5

6

					5				6				7			8				9				10				11
									Alf	R HANDL	ING U	UNITS																
_							C													HEATING CO	IL						FILTERS	1
DE		SENSIBLE/TC CAPACIT (MBH)	ITY	MIN ROWS/ MAX FPI	EA (°F		LAT (°F)	APPR (IN)	JANTITY & OX SIZE WxH OR TOTAL	MAX FACE VELOCITY (FPM)	MAX APD (IN W.G.				X WPD T HD) DES	IG CAPAC (MBH			LAT (°F)	QUANTITY & APPROX SIZE Wx (IN) OR TOTAL	H MAX FACE VELOCITY (FPM)		/°E\	LWT (°F)	WATER FLOWRATE (GPM)	MAX WPD (FT HD)	(SEE SCHEDULE)	REMARKS
		(11011)	·/		DB	WB	DB W	3 A	REA (SF)	(1 + W)	(114 00.0)	.,								AREA (SF)	(1 F W)			11 I				
С	C-1	67.9/131.8	1.8		95	78	53.1 52	8	3.4	441	1.0	56	44 22	2.0	9 PHC	1		0	74.7	3.4	441	0.17	180	160	12.4	5.5	PF-1	
															RHC	-1 43.2		53.0	79.6	3.4	441	0.10	180	160	4.4	0.4	FF-1	
													FAN CO		NITS													
FC	DR EXTERNAL CO	COMPONEN'	ENTS ONLY AN	ND DOES NOT IN	ICLUDE I	NTEGRAI	. UNIT INLET	GRILLE, DISC	CHARGE GRILLE,	AND FILTER.			FAN CO	OIL UN	NITS													
S FC	DR EXTERNAL CO					NTEGRAI	. UNIT INLET	grille, disc					FAN CO	OILUN	NITS		H	EATING CAPA	ACITY				MOTOR			ELECT	RICAL	
- C	DR EXTERNAL CO	NC	NOMINAL AIR	ND DOES NOT IN EXTERNAL ST PRESSURE (IN (NOTE 1)	TATIC	NTEGRAI TOTAL (BTUH)	SE	GRILLE, DISC	C ENTERING AIR		ITY T (°F)	LWT (°F)	WATER	R MAX	(WPD TC	TAL ENTEI TH) DE		EATING CAPA	ACITY WT (°F)	WATER	MAX WPD (FT HD)	MBHP	NOTOR	ЛНР	VOLTS	ELECT		
E	LOCATION MECHANICAL PL	PLANS	NOMINAL AIR FLOWRATE (CFM) 400	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50	TATIC	TOTAL (BTUH) 9666	SE (B1	NS UH) 20	ENTERING AIR DB 75	COOLING CAPACI (°F) EWT 63 4	T (°F) 14	56	WATER FLOWRAT	R MAX TE (FT 1	С WPD ТС Г HD) (В 3.3 14	'UH) DE 927	RING AIR 5 (° F) 70 1	Г (° F) L V 80	WT (°F) 160	FLOWRATE1.5	(FT HD) 1.4		N	/12	120		H -	12 60
ĒE	LOCATION MECHANICAL PL MECHANICAL PL	PLANS PLANS	NOMINAL AIR FLOWRATE (CFM) 400 600	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50	TATIC	TOTAL (BTUH) 9666 14646	SE (B) 4(NS UH) 20 96	ENTERING AIR (DB 75 75 75	COOLING CAPACI (°F) EWT 63 4 63 4	T (°F) 14 14	56 56	WATER FLOWRAT 1.6 2.4	R MAX TE (FT	C WPD T HD) 3.3 14 3.8 21	"UH) DE 927 996	RING AIR 6 (°F) EW 70 1 70 1	F (°F) LN 80 80	WT (°F) 160 160	FLOWRATE 1.5 2.2	(FT HD) 1.4 3.4		N 1 1	/12 /12	120 120		H -	60 60
EE EE	LOCATION MECHANICAL PL	PLANS PLANS PLANS	NOMINAL AIR FLOWRATE (CFM) 400	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50	TATIC	TOTAL (BTUH) 9666	SE (B) 43 89 13	NS UH) 20	ENTERING AIR DB 75 75 75 75 75	COOLING CAPACI (°F) EWT 63 4 63 4 63 4	T (°F) 14	56	WATER FLOWRAT	R MAX TE (FT 1 1	K WPD TC F HD) (B' 3.3 14 3.8 21 5.8 26	UH) DE 927 996 885	RING AIR (°F) EW 70 1 70 1 70 1	F (°F) LN 80 80 80	WT (°F) 160	FLOWRATE1.5	(FT HD) 1.4		N 1 1	/12	120		H -	12 60
EE EE EE	LOCATION MECHANICAL PL MECHANICAL PL MECHANICAL PL	PLANS	NOMINAL AIR FLOWRATE (CFM) 400 600 800	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50	TATIC	TOTAL (BTUH) 9666 14646 18950	SE (B) 43 80 13 14	NS. UH) 20 96 000	ENTERING AIR DB 75 75 75 75 75	COOLING CAPACI (°F) EWT 63 4 63 4 63 4 63 4	T (°F) 14 14 14	56 56 56	WATER FLOWRAT 1.6 2.4 3.2	R MAX TE (FT 1 3 3 1 1 1	K WPD TC F HD) (B' 3.3 14 3.8 24 5.8 26 2.7 23	UH) DE 927 996 885 300	RING AIR (°F) EW 70 1 70 1 70 1 70 1 70 1 70 1	F (°F) LN 80 80 80	WT (°F) 160 160 160	FLOWRATE 1.5 2.2 2.7	(FT HD) 1.4 3.4 6.1		1 1	/12 /12 1/6	120 120 120		H -	12 60 60 60
SEE SEE SEE SEE SEE	LOCATION MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL	PLANS	NOMINAL AIR FLOWRATE (CFM) 400 600 800 600 800	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50	TATIC	TOTAL (BTUH) 9666 14646 18950 21900	SE (B) 43 80 13 14	NS UH) 20 96 900 000	Control ENTERING AIR DB 75 75 75 75 75 75 75 75 75 75	COOLING CAPACI (°F) EWT 63 4 63 4 63 4 63 4	T (°F) 14 14 14 14 14	56 56 56 56	WATER FLOWRAT 1.6 2.4 3.2 4.1	R MAX TE (FT 1 3 3 1 1 1	K WPD TC F HD) (B' 3.3 14 3.8 24 5.8 26 2.7 23	UH) DE 927 996 885 300	RING AIR (°F) EW 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1	F (°F) LN 80 80 80 80 80 80	WT (°F) 160 160 160 160	FLOWRATE 1.5 2.2 2.7 1.6	(FT HD) 1.4 3.4 6.1 2.2		1 1	1/12 1/12 1/6 1/5	120 120 120 208		H -	12 60 60 60 60 60
SEE SEE SEE SEE	LOCATION MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL	PLANS PLANS PLANS PLANS PLANS PLANS NTAN	NOMINAL AIR FLOWRATE (CFM) 400 600 800 600 800 800	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SE (B) 43 80 13 14	NS UH) 20 96 900 000	Control ENTERING AIR DB 75 75 75 75 75 75 75 75 75 75	COOLING CAPACI (°F) EWT 63 4 63 4 63 4 63 4	T (°F) 14 14 14 14 14	56 56 56 56	WATER FLOWRAT 1.6 2.4 3.2 4.1	R MAX TE (FT 1 3 1 1 1	C WPD TC F HD) (B' 3.3 14 3.8 24 5.8 26 2.7 23 9.4 23	UH) DE 927 996 885 300 900	RING AIR (°F) EW 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1	r (°F) LN 80 80 80 80 80 80 80	WT (°F) 160 160 160 160	FLOWRATE 1.5 2.2 2.7 1.6	(FT HD) 1.4 3.4 6.1 2.2		1 1	1/12 1/12 1/6 1/5	120 120 120 208 208	PI 1 1 1 1 1 1	H -	12 60 60 60 60 60
	LOCATION MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL	PLANS PLANS PLANS PLANS PLANS PLANS NTAN	NOMINAL AIR FLOWRATE (CFM) 400 600 800 600 800 600 800	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SE (B) 43 80 13 14	NS 20 96 900 000 300	ENTERING AIR DB 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75	COOLING CAPACI (°F) EWT 63 4 63 4 63 4 63 4 63 4 63 4 63 4 63 4 63 4 63 4	T (°F) 14 14 14 14 14 14 14	56 56 56 56 56	WATER FLOWRAT 1.6 2.4 3.2 4.1 4.4	R MAX TE (FT 1 3 1 1 1	(WPD TC F HD) (B 3.3 14 3.8 24 5.8 26 2.7 23 9.4 23 WATER	UH) DE 927 996 885 300 900 900 EAD (FT AF	RING AIR 3 (°F) EW 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 PROXIMATE P	Image: 100 (°F) LM 80 80 80 80 80 80 80 90	WT (°F) 160 160 160 160 160 MIN PUN	FLOWRATE 1.5 2.2 2.7 1.6 2.0	(FT HD) 1.4 3.4 6.1 2.2 2.2	BHP		1/12 1/12 1/6 1/5 1/5	120 120 120 208 208 ELE	PI 1 1 1 1 1 1 1 0 1	H	12 60 60 60 60 60 60 60
	LOCATION MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL PANSION	PLANS PLANS PLANS PLANS PLANS PLANS NTAN SERV HILLED WAT	NOMINAL AIR FLOWRATE (CFM) 400 600 800 600 800 800	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SE (B) 43 80 13 14	NS 20 96 000 300 DESIG	ENTERING AIR C DB 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75	COOLING CAPACI (°F) EWT 63 4 63 4 63 4 63 4 63 4 63 4 63 4 63 4 63 4 63 4 COOLING CAPACI	Γ (°F)	56 56 56 56 56	WATER FLOWRAT 1.6 2.4 3.2 4.1 4.4	R MAX TE (F1 1 1 1 1 1 1	K WPD TC F HD) (B' 3.3 14 3.8 21 5.8 26 2.7 23 9.4 23	UH) DE 927 996 885 300 900 900 EAD (FT HD) AF HD) DI	RING AIR EW 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1	r (°F) LN 80 80 80 80 80 80 UMPS SUCTION X DISCHARGE (IN)	WT (°F) 160 160 160 160 MIN PUN (%	FLOWRATE 1.5 2.2 2.7 1.6 2.0	(FT HD) 1.4 3.4 6.1 2.2 2.2 2.2 PM) BHP	BHP	1 1	1/12 1/12 1/6 1/5 1/5 VOLT	120 120 208 208 ELE	PI 1 1 1 1 1 1	H -	12 60 60 60 60 60
	LOCATION MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL PANSION	PLANS PLANS PLANS PLANS PLANS PLANS NTAN SERV HILLED WAT	NOMINAL AIR FLOWRATE (CFM) 400 600 800 600 800 800 NKS RVICE	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SE (B) 43 80 13 14	NS. 20 96 900 000 300 DESIG P-CHW-1	Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Cols	COOLING CAPACI (°F) EWT 63 4 63 6 63 6	T (°F) 44 44 44 44 44 44 50 N ROOM	56 56 56 56 56 CHILLEI	WATER FLOWRAT 1.6 2.4 3.2 4.1 4.4	R МАХ TE (F1 1 1 1 1 1 1 F ГЕМ	C WPD TC F HD) (B' 3.3 14 3.8 21 5.8 26 2.7 23 9.4 23 WATER LOWRATE H (GPM) 70.0	UH) DE 927 996 885 300 900 900 EAD (FT HD) AF 70.0 900	RING AIR EW 70 1 70	Image: Constraint of the second se	WT (°F) 160 160 160 160 160 MIN PUN (%) 50	FLOWRATE 1.5 2.2 2.7 1.6 2.0	(FT HD) 1.4 3.4 6.1 2.2 2.2 PM) BHP 2.14	BHP	N 1 1 	1/12 1/6 1/5 1/5 VOLT 208 V	120 120 208 208 ELE FS	PI 1	H	12 60 60 60 60 60 60 60
	LOCATION MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL PANSION	PLANS PLANS PLANS PLANS PLANS PLANS NTAN SERV HILLED WAT	NOMINAL AIR FLOWRATE (CFM) 400 600 800 600 800 800 NKS RVICE	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SE (B) 43 80 13 14	NS. UH) 20 96 900 000 300 DESIG P-CHW-1 P-CHW-2	Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Cols	COOLING CAPACI (°F) EWT 63 4 63 4 64 6 64 6	I4 IA IA	56 56 56 56 56 CHILLEI CHILLEI	WATER FLOWRAT 1.6 2.4 3.2 4.1 4.4	R MAX TE (FT 1 3 1 1 1 1 1 1 5 5 6 7 6 7 6 7 6 7 6 7 7 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WPD TC F HD) (B') 3.3 14' 3.8 21' 5.8 26' 2.7 23' 9.4 23' WATER LOWRATE H (GPM) 70.0 70.0 70.0	UH) DE 927 996 885 300 900 900 EAD (FT HD) AF 70.0 70.0	RING AIR 3 (°F) EW 70 1 9 PROXIMATE MPELLER METER (IN) 0' - 8 1/8" 1	(°F) LN 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 90 <td>WT (°F) 160 160 160 160 160 MIN PUN (% 50 50 50</td> <td>FLOWRATE 1.5 2.2 2.7 1.6 2.0</td> <td>(FT HD) 1.4 3.4 6.1 2.2 2.2 PM) BHP 2.14 2.14</td> <td>BHP</td> <td>N 1</td> <td>VOLT 208 V 208 V</td> <td>120 120 208 208 ELE TS V</td> <td>PI 1 1 1 1 1 1 1 0 1</td> <td>H</td> <td>12 60</td>	WT (°F) 160 160 160 160 160 MIN PUN (% 50 50 50	FLOWRATE 1.5 2.2 2.7 1.6 2.0	(FT HD) 1.4 3.4 6.1 2.2 2.2 PM) BHP 2.14 2.14	BHP	N 1	VOLT 208 V 208 V	120 120 208 208 ELE TS V	PI 1 1 1 1 1 1 1 0 1	H	12 60
SEE SEE SEE SEE SEE	LOCATION MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL MECHANICAL PL PANSION	PLANS PLANS PLANS PLANS PLANS PLANS NTAN SERV HILLED WAT	NOMINAL AIR FLOWRATE (CFM) 400 600 800 600 800 800 NKS RVICE	EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SE (B) 43 80 13 14	NS. 20 96 900 000 300 DESIG P-CHW-1	Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Cols	COOLING CAPACI (°F) EWT 63 4 63 6 63 6	I4 IA IA	56 56 56 56 56 CHILLEI CHILLEI HEATING H	WATER FLOWRAT 1.6 2.4 3.2 4.1 4.4	R MAX TE (FT 1 1 1 1 1 1 1 5 F	C WPD TC F HD) (B' 3.3 14 3.8 21 5.8 26 2.7 23 9.4 23 WATER LOWRATE H (GPM) 70.0	UH) DE 927 996 885 300 900 900 EAD (FT HD) AF 70.0 70.0 50.0 900	RING AIR EW 70 1 70	Image: relation of the second seco	WT (°F) 160 160 160 160 160 MIN PUN (%) 50	FLOWRATE 1.5 2.2 2.7 1.6 2.0 IP EFF. SPEED (R 0 1750 5 1750	(FT HD) 1.4 3.4 6.1 2.2 2.2 PM) BHP 2.14	BHP MOT	N 1 1 	1/12 1/6 1/5 1/5 VOLT 208 V	120 120 208 208 208 ELE FS V V V	PI 1	H	+2

	-																										
								AIR I	HANDLI	ING U	INITS																
						COOLIN							-1					HEA	TING COIL							FILTERS	1
	DESIG CA	SIBLE/TOTAL CAPACITY (MBH)	MIN ROWS/ MAX FPI	EAT (°F) DB		LAT (°F) WB	QUANTI APPROX SI (IN) OR T AREA (۲E WxH ۲ DTAL	MAX FACE VELOCITY (FPM)	MAX APD (IN W.G.)	EWT L' (°F) (WT °F) (GPM)		DESIG	CAPACITY (MBH)	MIN ROWS/ MAX FPI	EAT L (°F) ('	AT APPROX F) (IN) O	NTITY & SIZE WxH R TOTAL A (SF)	MAX FACE VELOCITY (FPM)	MAX APD (IN W.G.)	EWT (°F)	LWT (°F)	WATER FLOWRATE (GPM)	MAX WPD (FT HD)	(SEE SCHEDULE)	REMARKS
					1									PHC-1	121		0 7	.7	3.4	441	0.17	180	160	12.4	5.5	PF-1	
	CC-1 67.	67.9/131.8		95	78 53.1	52.8	3.4		441	1.0	56	44 22.0	9	RHC-1	43.2		53.0 7		3.4	441	0.10	180	160	4.4	0.4	FF-1	
																											_
											F	AN COI	L UNITS														
EIS	FOR EXTERNAL COMP				TEGRAL UNIT	T INLET GRIL	LE, DISCHAR(ID FILTER. DLING CAPACIT	TY	F	AN COI	L UNITS			HEATING	G CAPACITY					OTOR			ELECT	RICAL	
S	FOR EXTERNAL COMP	NOMINAL AIF	AND DOES NOT IN R EXTERNAL ST PRESSURE (IN (NOTE 1)		TEGRAL UNIT	T INLET GRIL SENS. (BTUH)			OLING CAPACIT		LWT (°F)	AN COI	L UNITS MAX WPD (FT HD)	TOTAL (BTUH)	ENTERING AIR DB (°F)	1	G CAPACITY LWT (°	⁼) WA1 FLOW	ER M RATE (AX WPD FT HD)	M			VOLTS	ELECT		Z REMAR
S	LOCATION EE MECHANICAL PLANS	NOMINAL AIF FLOWRATE (CFM) NS 400	R PRESSURE (IN (NOTE 1) 0.50		TOTAL (BTUH) 9666	SENS. (BTUH) 4320	ENT DB 75	COO ERING AIR (°F) WB 63	DLING CAPACIT	' (°F)	LWT (°F) 56	WATER FLOWRATE 1.6	MAX WPD (FT HD) 13.3	TOTAL (BTUH) 14927	DB (°F) 70	EWT (°F)	LWT (° 160	FLOW	RATE (FT HD) 1.4		M	/12	120		H H	0
S	LOCATION EE MECHANICAL PLANS EE MECHANICAL PLANS	NOMINAL AIF FLOWRATE (CFM) NS 400 NS 600	R PRESSURE (IN (NOTE 1) 0.50 0.50		TOTAL (BTUH) 9666 14646	SENS. (BTUH) 4320 8996	ENT DB 75 75	COO ERING AIR (°F) WB 63 63	OLING CAPACIT) B EWT 44 44	• (° F) 4 4	LWT (°F) 56 56	WATER FLOWRATE 1.6 2.4	MAX WPD (FT HD) 13.3 3.8	TOTAL (BTUH) 14927 21996	DB (°F) 70 70	EWT (°F) 180 180	LWT (° 160 160	⁻⁾ FLOW 1. 2.	RATE (FT HD) 1.4 3.4		M	/12 /12	120 120		H H	2 0 0
	LOCATION EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS	NOMINAL AIF FLOWRATE (CFM) NS 400 NS 600 NS 800	R EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950	SENS. (BTUH) 4320 8996 13900	ENT DB 75 75 75 75	COO ERING AIR (°F) WB 63 63 63	OLING CAPACIT) B EWT 44 44 44	* (° F) 4 4 4 4	LWT (°F) 56 56 56	WATER FLOWRATE 1.6 2.4 3.2	MAX WPD (FT HD) 13.3 3.8 15.8	TOTAL (BTUH) 14927 21996 26885	DB (°F) 70 70 70	EWT (°F) 180 180 180 180	LWT (° 160 160 160	FLOW	RATE (FT HD) 1.4 3.4 6.1		1, 1, 1, 1,	/12 /12 1/6	120 120 120		H H 	2 0 0 0
	LOCATION EE MECHANICAL PLANS EE MECHANICAL PLANS	NOMINAL AIF FLOWRATE (CFM) NS 400 NS 600 NS 800 NS 600	R PRESSURE (IN (NOTE 1) 0.50 0.50		TOTAL (BTUH) 9666 14646	SENS. (BTUH) 4320 8996	ENT DB 75 75	COO ERING AIR (°F) WB 63 63	OLING CAPACIT) 3 EWT 44 44 44 44	* (° F) 4 4 4 4	LWT (°F) 56 56	WATER FLOWRATE 1.6 2.4	MAX WPD (FT HD) 13.3 3.8	TOTAL (BTUH) 14927 21996	DB (°F) 70 70	EWT (°F) 180 180	LWT (° 160 160	⁻⁾ FLOW 1. 2.		FT HD) 1.4 3.4		M 1, 1, 1, 1 1 1	/12 /12	120 120		H H 	2 0 0
S S S S S S S S S	LOCATION EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS	NOMINAL AIF FLOWRATE (CFM) NS 400 NS 600 NS 800 NS 600 NS 800 TANKS	R EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SENS. (BTUH) 4320 8996 13900 14000 17800	ENT DB 75 75 75 75 75 75	COO ERING AIR (°F) WB 63 63 63 63 63	OLING CAPACIT) B 44 44 44 44 44 44	- (°F) 4 4 4 4 4 4 4 4	LWT (°F) 56 56 56 56 56 56	WATER FLOWRATE 1.6 2.4 3.2 4.1 4.4	MAX WPD (FT HD) 13.3 3.8 15.8 12.7 19.4 WATER	TOTAL (BTUH) 14927 21996 26885 23300 23900	DB (°F) 70 70 70 70 70 70 70	EWT (°F) 180 180 180 180 180 180 180 EVENT	LWT (° 160 160 160 160 160 160	FLOW 1. 2. 1. 2. 1. 2. 1. 2. 1. 2.		FT HD) 1.4 3.4 6.1 2.2 2.2	BHP	M 1, 1, 1, 1 1 1	/12 /12 1/6 1/5 1/5	120 120 120 208 208 ELE	PI 1 1 1 1 1 1 5 7 7 7		2 0 0 0 0 0
	LOCATION EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS	NOMINAL AIF FLOWRATE (CFM) NS 400 NS 600 NS 800 NS 600 NS 800	R EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SENS. (BTUH) 4320 8996 13900 14000 17800	ENT DB 75 75 75 75 75 75 75	COO ERING AIR (°F) WB 63 63 63 63 63 63 77PE (SEE SPEC)	DLING CAPACIT B EWT 44 44 44 44 44 44 44 44 44	• (°F) 4 4 4 4 4 4 4 N	LWT (°F) 56 56 56 56 56 56	WATER FLOWRATE 1.6 2.4 3.2 4.1 4.1 4.4	MAX WPD (FT HD) 13.3 3.8 15.8 12.7 19.4 WATER FLOWRAT (GPM)	TOTAL (BTUH) 14927 21996 26885 23300 23900	DB (°F) 70	EWT (°F) 180 180 180 180 180 180 180 180 ER C(IN) EWT (°F) EWT (°F	LWT (° 160 160 160 160 160 160 160	FLOW 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. (%)	RATE (FT HD) 1.4 3.4 6.1 2.2 2.2 0 BHP	BHP	M 1, 1, 1, 1 1 1	/12 /12 1/6 1/5 1/5 VOL	120 120 208 208 ELE TS	PI 1 1 1 1 1 1	H H 	0 0 0 0
	LOCATION EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS	NOMINAL AIF FLOWRATE (CFM) NS 400 NS 600 NS 600 NS 600 NS 800 TANKS SERVICE ED WATER SYSTEM	R EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SENS. (BTUH) 4320 8996 13900 14000 17800	ENT DB 75 75 75 75 75 75 75 75	COO RING AIR (°F) WB 63 63 63 63 63 63 63 63 63 63	DLING CAPACIT) B CAPACIT A CAPACIT	• (°F) 4 4 4 4 4 4 4 N N ROOM	LWT (°F) 56 56 56 56 56 56 56 56	WATER FLOWRATE 1.6 2.4 3.2 4.1 4.1 4.4 RVICE	MAX WPD (FT HD) 13.3 3.8 15.8 12.7 19.4	TOTAL (BTUH) 14927 21996 26885 23300 23900	DB (°F) 70 70 70 70 70 70 70 70 70 70	EWT (°F) 180 180 180 180 180 180 180 ENT ER EN	LWT (° 160 160 160 160 160 160 160 160	FLOW 1. 2. 2. 1. 2. 50	RATE (FT HD) 1.4 3.4 6.1 2.2 2.2	BHP	0R HP	/12 /12 1/6 1/5 1/5 VOL 208	120 120 208 208 ELE TS	PI 1 1 1 1 1 1 5 7 7 7	H H 	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	LOCATION EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS	NOMINAL AIF FLOWRATE (CFM) NS 400 NS 600 NS 600 NS 600 NS 800 TANKS SERVICE ED WATER SYSTEM	R EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SENS. (BTUH) 4320 8996 13900 14000 17800	ENT DB 75 75 75 75 75 75 75 75 75 CHW-1 -CHW-1	COO RING AIR (°F) WB 63 63 63 63 63 63 63 63 63 63	DLING CAPACIT) B 44 44 44 44 44 44 44 44 44 44 44 44 4	• (°F) 4 4 4 4 4 4 M ROOM	LWT (°F) 56 56 56 56 56 56 56 56 56	WATER FLOWRATE 1.6 2.4 3.2 4.1 4.4 4.4 RVICE	MAX WPD (FT HD) 13.3 3.8 15.8 12.7 19.4 WATER FLOWRAT (GPM) 70.0 70.0 70.0	TOTAL (BTUH) 14927 21996 26885 23300 23900	DB (°F) 70 70 70 70 70 70 70 70 70 70	EWT (°F) 180	LWT (° 160 160 160 160 160 160 160 160	FLOW 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 50 50	RATE (FT HD) 1.4 3.4 6.1 2.2 2.2 2.2 BHP 2.14 2.14	BHP	OR HP	/12 /12 1/6 1/5 1/5 VOL 208 208	ELE V	CTRICAL PH 3 3 PH	H H 	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S S S S S S S S S S S S S S S S S S S	LOCATION EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS EE MECHANICAL PLANS	NOMINAL AIF FLOWRATE (CFM) NS 400 NS 600 NS 600 NS 600 NS 800 TANKS SERVICE ED WATER SYSTEM	R EXTERNAL ST PRESSURE (IN (NOTE 1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		TOTAL (BTUH) 9666 14646 18950 21900	SENS. (BTUH) 4320 8996 13900 14000 17800	ENT DB 75 75 75 75 75 75 75 75 0 CHW-1	COO ERING AIR (°F) WB 63 63 63 63 63 63 63 7PPE (SEE SPEC) N	DLING CAPACIT) B CAPACIT A CAPACIT	* (°F) 4 4 4 4 4 4 4 M ROOM ROOM ROOM	LWT (°F) 56 56 56 56 56 56 56 SE CHILLED W CHILLED W CHILLED W	WATER FLOWRATE 1.6 2.4 3.2 4.1 4.1 4.4 RVICE	MAX WPD (FT HD) 13.3 3.8 15.8 12.7 19.4 WATER FLOWRAT (GPM) 70.0 70.0 70.0 40.0	TOTAL (BTUH) 14927 21996 26885 23300 23900	DB (°F) 70 70 70 70 70 70 70 70 70 70	EWT (°F) 180 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	LWT (° 160 160 160 160 160 160 160 160	FLOW 1. 2. 2. 1. 2. 50	RATE (FT HD) 1.4 3.4 6.1 2.2 2.2	BHP	0R HP	/12 /12 1/6 1/5 1/5 VOL 208	ELE V V V 120 120 208 208 ELE V V V	PI 1 1 1 1 1 1 5 7 7 7	H H 	2 0 0 0 0 0

TION	SERVICE	REMARKS
AL ROOM	CHILLED WATER SYSTEM	
AL ROOM	HEATING HOT WATER SYSTEM	

		1G UI	NITS																	
												HEATING COIL							FILTERS	[
NTITY & X SIZE WxH R TOTAL EA (SF)	MAX FACE VELOCITY (FPM) (I	MAX APD IN W.G.)	EWT (°F)			MAX WPD (FT HD)	DESIG	CAPACITY (MBH)	MIN ROWS/ MAX FPI		Q T APPI) (IN	QUANTITY & ROX SIZE WxH N) OR TOTAL		MAX APD (IN W.G.)	EWT (°F)	LWT (°F)	WATER FLOWRATE (GPM)	MAX WPD (FT HD)	(SEE SCHEDULE)	REMARKS
0.4		10	50		00.0		PHC-1	121		0 74	7	3.4	441	0.17	180	160	12.4	5.5	PF-1	
3.4	441	1.0	56	44	22.0	9	RHC-1	43.2		53.0 79	6	3.4	441	0.10	180	160	4.4	0.4	FF-1	
			-																	
IARGE GRILLE, A	ND FILTER.			FAN (COIL (JNITS														
				FAN (COIL L	JNITS			HEATING	CAPACITY					OTOR			ELECT	RICAL	
C ENTERING AIR (°	OOLING CAPACITY		LWT (°F)	FAN (TER	JNITS MAX WPD (FT HD)	TOTAL (BTUH)	ENTERING AI DB (°F)		CAPACITY			X WPD T HD)	M	OTOR M		VOLTS	ELECTI		Z REMAR
C ENTERING AIR (° DB V 75 0	OOLING CAPACITY ^{(°} F) VB ⁶³ 44		56	WAT FLOWI	TER M /RATE	MAX WPD (FT HD) 13.3	(BTUH) 14927	DB (°F) 70	R EWT (°F)	LWT (°I		.OWRATE (F	T HD) 1.4		N	/12	120		H H	Z 0
C ENTERING AIR (° DB V 75 (° 75 (°	OOLING CAPACITY 2°F) EWT (° 03 44 03 44	°F) L	56 56	WAT FLOWI 1.6 2.4	TER / /RATE .6 .4	MAX WPD (FT HD) 13.3 3.8	(BTUH) 14927 21996	DB (°F) 70 70	R EWT (°F) 180 180	LWT (°I 160 160		OWRATE (F 1.5 2.2	T HD) 1.4 3.4		N 1 1	/12 /12	120 120	PH 1 1	H H	2 0 0
C ENTERING AIR (° DB V 75 (° 75 (° 75 (°	COLING CAPACITY 'F) EWT (° 03 44 03 44 03 44	°F) L	56 56 56	WAT FLOWI 1.6 2.4 3.2	TER M /RATE	MAX WPD (FT HD) 13.3 3.8 15.8	(BTUH) 14927 21996 26885	DB (°F) 70 70 70	R EWT (°F) 180 180 180	LWT (°I 160 160 160		OWRATE (F 1.5 2.2 2.7	T HD) 1.4 3.4 6.1		N 1 1	/12 /12 1/6	120 120 120		H H	2 0 0 0
C ENTERING AIR (° DB V 75 (° 75 (° 75 (° 75 (°	OOLING CAPACITY 'F) EWT (° 53 44 53 44 53 44	°F) L	56 56	WAT FLOWI 1.6 2.4	TER M /RATE	MAX WPD (FT HD) 13.3 3.8	(BTUH) 14927 21996	DB (°F) 70 70	R EWT (°F) 180 180	LWT (°I 160 160		OWRATE (F 1.5 2.2 2.7 1.6	T HD) 1.4 3.4		1 1	/12 /12	120 120	PH 1 1	H H	2 0 0 0 0
C ENTERING AIR (° DB V 75 (° 75 (° 75 (° 75 (°	COLING CAPACITY 'F) EWT (° 63 44 63 44 63 44 63 44 63 44	°F) L	56 56 56 56 56	WAT FLOWI 1.6 2.4 3.2 4.4	TER M /RATE	MAX WPD (FT HD) 13.3 3.8 15.8 12.7	(BTUH) 14927 21996 26885 23300 23900	DB (°F) 70 70 70 70 70 70	R EWT (°F) 180 180 180 180 180 180 180 180 180 180 ER SUCT DISCH DISCH	LWT (°I 160 160 160 160 160 DS ON X ARGE MIN		OWRATE (F 1.5 2.2 2.7 1.6 2.0 2.0	1.4 3.4 6.1 2.2 2.2	BHP	1 1	1/12 1/12 1/6 1/5	120 120 120 208 208 ELEC	PH 1 1	H H 6 6 6 6	2 0 0 0 0
C ENTERING AIR (° DB V 75 (° 75 (° 75 (° 75 (° 75 (° 75 (° 75 (°) 75	OOLING CAPACITY 'F) EWT (° 53 44 53 44 53 44 53 44 53 44 53 44 53 44 53 44	°F) L	56 56 56 56 56	WAT FLOWI 1.6 2.4 3.2 4.4	TER N /RATE	MAX WPD (FT HD) 13.3 3.8 15.8 12.7 19.4 WATER FLOWRATE	(BTUH) 14927 21996 26885 23300 23900 HEAD (F	DB (°F) 70 70 70 70 70 70 70 70	R EWT (°F) 180	LWT (°I 160 160 160 160 160 160 NON X ARGE N	PUMP EFF	OWRATE (F 1.5 2.2 2.7 1.6 2.0	1.4 3.4 6.1 2.2 2.2	BHP		1/12 1/12 1/6 1/5 1/5	120 120 208 208 ELEC	PH 1 1 1 1 1 1 2 2 7 7	H H	Z 0 0 0 0 0
C ENTERING AIR (° DB V 75 (° 75 (° 75 (° 75 (° 75 (° 75 (° 75 (°) 75	OOLING CAPACITY PB B COLING CAPACITY EWT (° C C C C C C C C C C C C C	'F) L	56 56 56 56 56 CHILLED CHILLED	WAT FLOWI 1.6 2.4 3.2 4.7 4.4 SERVICE	TER M /RATE	MAX WPD (FT HD) 13.3 3.8 15.8 12.7 19.4 WATER FLOWRATE (GPM) 70.0 70.0	(BTUH) 14927 21996 26885 23300 23900 HEAD (F [*] HD) 70.0 70.0	DB (°F) 70	R EWT (°F) 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 ISCH SUCT LER SUCT R (IN) (II /8" 2.5	LWT (°I 160 160 160 160 160 160 CON X ARGE N X 2 X 2 X 2	PUMP EFF (%) 50 50	OWRATE (F 1.5 2.2 2.7 1.6 2.0 2.7	T HD) 1.4 3.4 6.1 2.2 2.2 2.2 BHP 2.14 2.14	BHP	0R HP	1/12 1/12 1/6 1/5 1/5 VOL 208 208	120 120 120 208 208 208 SV	PH 1 <	H H 6 6 6 6 6 6 60 60	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C ENTERING AIR (° DB V 75 (° 75 (° 75 (° 75 (° 75 (° 75 (° 75 (°) 75	OOLING CAPACITY PB B3 CAPACITY CP CP CP CP CP CP CP CP CP CP	'F) L	56 56 56 56 56 CHILLED CHILLED EATING H	WAT FLOWI 1.6 2.4 3.2 4.7 4.2 SERVICE WATER SY	TER /RATE .6 .4 .2 .1 .4 .4 .4 .2 .1 .4 .2 .1 .4 .2 .2 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	MAX WPD (FT HD) 13.3 3.8 15.8 12.7 19.4 WATER FLOWRATE (GPM) 70.0	(BTUH) 14927 21996 26885 23300 23900 HEAD (F ⁻ HD) 70.0	DB (°F) 70	R EWT (°F) 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 MATE SUCT LER DISCH R (IN) (II /8" 2.5 /4" 1.5 x	LWT (°I 160 160 160 160 160 160 CON X ARGE N X 2 X 2 X 2 1.25	<pre>/ FL(////// //// //// /// /// /// /// ///</pre>	OWRATE (F 1.5 2.2 2.7 1.6 2.0 2.0	T HD) 1.4 3.4 6.1 2.2 2.2 2.2 BHP 2.14	BHP	0R HP	1/12 1/12 1/6 1/5 1/5 VOL 208	120 120 120 208 208 208 208 208 208 208 208	PH 1	H H 60	2 00 00 00 00 00 00 00 00 00 00 00 00 00
8 8 8 8 3. 3.	SIZE WXH TOTAL (SF) 4 CHEDULED CA	SIZE WXH TOTAL (SF) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SIZE WxH TOTAL (SF) MAX FACE VELOCITY (FPM) MAX APD (IN W.G.) 4 441 1.0 CHEDULED CAPACITY. TUBE VELOCITY A	SIZE WxH TOTAL (SF)MAX FACE VELOCITY (FPM)MAX APD (IN W.G.)EWT (°F)44411.056CHEDULED CAPACITY. TUBE VELOCITY AT SCHEDU	SIZE WxH TOTAL (SF)MAX FACE VELOCITY (FPM)MAX APD (IN W.G.)EWT (°F)LWT (°F)FI44411.05644CHEDULED CAPACITY. TUBE VELOCITY AT SCHEDULED GPM	SIZE WxH TOTAL (SF)MAX FACE VELOCITY (FPM)MAX APD (IN W.G.)EWT (°F)LWT (°F)WATER FLOWRATE (°F)44411.0564422.0CHEDULED CAPACITY. TUBE VELOCITY AT SCHEDULED GPM TO BE BET	SIZE WxH TOTAL (SF)MAX FACE VELOCITY (FPM)MAX APD (IN W.G.)EWT (°F)LWT (°F)WATER FLOWRATE (°F)MAX WPD (GPM)44411.0564422.09	SIZE WxH TOTAL (SF)MAX FACE VELOCITY (FPM)MAX APD (IN W.G.)EWT (°F)LWT (°F)WATER FLOWRATE (°F)MAX WPD (FT HD)DESIG44411.0564422.09PHC-1CHEDULED CAPACITY. TUBE VELOCITY AT SCHEDULED GPM TO BE BETWEEN 3 FPS AND 5 FPS. I	SIZE WxH TOTAL (SF)MAX FACE VELOCITY (FPM)MAX APD (IN W.G.)EWT (°F)LWT (°F)WATER FLOWRATE (°F)MAX WPD (FHD)DESIGCAPACITY (MBH)44411.0564422.09PHC-1121CHEDULED CAPACITY. TUBE VELOCITY AT SCHEDULED GPM TO BE BETWEEN 3 FPS AND 5 FPS. NOTE PUMP FL	SIZE WxH TOTAL (SF) MAX FACE VELOCITY (FPM) MAX APD (IN W.G.) EWT (°F) LWT (°F) WATER FLOWRATE (GPM) MAX WPD (FT HD) DESIG CAPACITY (MBH) MIN ROWS/ MAX FPI 4 441 1.0 56 44 22.0 9 PHC-1 121 CHEDULED CAPACITY. TUBE VELOCITY AT SCHEDULED GPM TO BE BETWEEN 3 FPS AND 5 FPS. NOTE PUMP FLOW RATE PLUS 3	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{SIZE WxH} \\ \text{TOTAL} \\ \text{(SF)} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \text{MAX FACE} \\ \text{VELOCITY} \\ \text{(FPM)} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \text{MAX} \\ \text{APD} \\ (IN W.G.) \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \text{EWT} \\ \text{(°F)} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \text{LWT} \\ \text{(°F)} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \text{WATER} \\ \text{FLOWRATE} \\ \text{(GPM)} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \text{MAX WPD} \\ \text{(FTHD)} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \text{DESIG} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{CAPACITY} \\ \text{(MBH)} \end{array} \end{array} & \begin{array}{c} \text{MIN ROWS} \\ \text{MAX FPI} \end{array} & \begin{array}{c} \begin{array}{c} \text{EAT} \\ \text{(°F)} \end{array} & \begin{array}{c} \begin{array}{c} \text{(°F)} \end{array} \end{array} \\ \\ \begin{array}{c} \begin{array}{c} \text{(°F)} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{MAX UPD} \\ \text{(°F)} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{MAX UPD} \\ \text{(°F)} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{MAX WPD} \\ \text{(°F)} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{DESIG} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{CAPACITY} \\ \text{(MBH)} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \text{MIN ROWS} \\ \text{MAX FPI} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{EAT} \\ \text{(°F)} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{(°F)} \end{array} \end{array} \\ \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{A44} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} 22.0 \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{PHC-1} \end{array} & \begin{array}{c} 121 \end{array} & \begin{array}{c} 121 \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ $	$ \begin{array}{c} \begin{array}{c} \mbox{First} \& \\ \mbox{Size Wxh} \\ \mbox{TOTAL} \\ \mbox{(FPM)} \end{array} & \begin{array}{c} \mbox{MAX FACE} \\ \mbox{Velocity} \\ \mbox{(FPM)} \end{array} & \begin{array}{c} \mbox{MAX} \\ \mbox{APD} \\ \mbox{(IN W.G.)} \end{array} & \begin{array}{c} \mbox{Ewt} \\ \mbox{(°F)} \end{array} & \begin{array}{c} \mbox{Lwt} \\ \mbox{(°F)} \end{array} & \begin{array}{c} \mbox{WATER} \\ \mbox{FlowrAte} \\ \mbox{(GPM)} \end{array} & \begin{array}{c} \mbox{MAX wpd} \\ \mbox{(FT Hd)} \end{array} & \begin{array}{c} \mbox{Desig} \end{array} & \begin{array}{c} \mbox{Capacity} \\ \mbox{(MBH)} \end{array} & \begin{array}{c} \mbox{Min Rows/} \\ \mbox{MAX FPI} \end{array} & \begin{array}{c} \mbox{EAT} \\ \mbox{(F)} \end{array} & \begin{array}{c} \mbox{LAT} \\ \mbox{(°F)} \end{array} & \begin{array}{c} \mbox{LAT} \\ \mbox{(°F)} \end{array} & \begin{array}{c} \mbox{LAT} \\ \mbox{(°F)} \end{array} & \begin{array}{c} \mbox{Max wpd} \\ \mbox{(°F)} \end{array} & \begin{array}{c} \mbox{Max wpd} \\ \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{Desig} \end{array} & \begin{array}{c} \mbox{EAT} \\ \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{EAT} \\ \mbox{(°F)} \end{array} & \begin{array}{c} \mbox{LAT} \\ \mbox{(°F)} \end{array} & \begin{array}{c} \mbox{Max Wpd} \\ \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{EAT} \\ \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{EAT} \\ \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{LAT} \\ \mbox{(°F)} \end{array} & \begin{array}{c} \mbox{Max Max PI} \\ \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{Desig} \end{array} & \begin{array}{c} \mbox{EAT} \\ \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{EAT} \\ \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{EAT} \\ \mbox{Max FPI} \end{array} & \begin{array}{c} \mbox{Max PI} \end{array} &$	TITY & SIZE WXH TOTAL (SF) MAX MAX (FPM)MAX MAX (PPM)MAX MAX (PPM)MAX MAX (PPM)MAX PW (PPM)MAX PW (PPM)MAX PW (PPM)MAX PW (PPM)MAX MAX WPD (PPM)MAX WPD (PFHD)DESIGCAPACITY (MBH)MIN ROWS/ MAX FPIEAT (PF)LAT LAT (PF)QUANTITY & APPROX SIZE WXH (PPROX SIZE WXH (PPROX SIZE WXH (PFHD)44411.0564422.09PHC-1121074.73.4CHEDULED CAPACITY.100564422.09PHC-143.253.079.63.4CHEDULED CAPACITY.TUBE VELOCITY AT SCHEDULED GPM TO BE BETWEEN 3 FPS AND 5 FPS.NOTE PUMP FLOW RATE PLUS SYSTEM FLOW RATE EQUALS	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Image: Note the problem in the pro	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \label{eq:relation} \prod_{\substack{n \in \mathcal{N} \\ n \in \mathcal{N} \\ n$	$\begin{array}{c} \label{eq:relation} \begin{tabular}{c} \begi$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \label{eq:relation} \prod_{i=1}^{NTY\delta} \sum_{i=1}^{NTY\delta} \sum_{$

						FANS							
DESIG	TYPE	SERVICE		FLOW FM)	TOTAL STATIC PRESSURE (IN	WHEEL DIAMETER	SPEED	BHP	MOTOR		ELECTRICAL		REMARKS
	(SEE SPEC)	-	MAX	MIN	WG)	(IN)	(RPM)		HP	VOLTS	PH	HZ	
EF-1		KITCHEN EXHAUST	150	150	1.0	6.75	1350			120	1	60	
EF-2		MECH RM EXHAUST	350	350	1.0	11.2	2500	0.45	1/2	120	1	60	
EF-3		TOILET RM 006 EXHAUST	105	150	0.8	7.9	1050			120	1	60	
EF-4		TOILET RM 007 EXHAUST	115	115	0.8	7.9	1050			120	1	60	
EF-5		TOILET RM 105 EXHAUST	95	95	0.8	7.9	1050			120	1	60	
EF-6		TOILET RM 106 EXHAUST	95	95	0.8	7.9	1050			120	1	60	
EF-7		JANITOR CLOSET 009	50	50	0.8	7.9	950			120	1	60	
EF-8		TOILET RM C103 EXHAUST	75	75	0.8	7.9	950			120	1	60	
EF-9		TOILET RM C105 EXHAUST	75	75	0.8	7.9	950			120	1	60	
F-SA-1	PL	AHU-1	1500	1500	5.4	9	4041	2.17	3	208	3	60	

					AIR CO	OLED CO	ONDENS	SING UNI	TS			
			NOMINAL		EVAPORATOR	COND	ENSER			ELECTRICAL		
DESIG	TYPE (SEE SPEC)	LOCATION	COOLING CAPACITY (TONS)	MAX AMPS @ FULL LOAD	AMB TEMP DB/WB (°F)	AMB TEMP DB/WB (°F)	NUMBER OF CIRCUITS	COMPRESSO R QUANTITY	VOLTS	РН	HZ	REMARKS
ACCU-1			1.5	12	75/63	95/78	1	1	208	1	60	B.O.D. MITSHUBISHI PUYA18NHA6

DESIG	TYPE (SEE SPEC)	LOCATION	SERVICE	MERV	MAX FACE VELOCITY (FPM)	DEPTH (IN)	INITIAL / FINAL APD (IN WG)	QUANTITY & APPROX SIZE LxW (IN) OR AREA (SF)	REMARKS
PF-1	PF	AHU-1	PRE-FILTER	8	455	2	.23/.27	3.3	
FF-1	FF	AHU-1	FINAL FILTER	13	455	12	.45/.55	3.3	

DESIG ACU-1

16	
DESIG	
HX-CHW-1	CH
NOTES:	
1. CERTIFICATI	ON SHALL E

7

				AIR		TIONERS	5				
	TYPE (SEE			TOTAL	SENSIBLE	AIRFLOW		ELECTRIC	AL		
i	SPEC)	LOCATION	SERVICE	COOLING (MBH)	COOLING (MBH)	RATE (CFM)	FLA	VOLTS	PH	HZ	REMARKS
		TELECOM CLOSET	TELECOM CLOSET	18.0	14.0	400	1	208	1	60	B.O.D. MITSHUBISHI PKA-A18HA6

	WATER	R-TO-WA	TER HEA	TE	(CHA	NGER					
			PRIMAR	Y WATER	(CAMPU	S LOOP)	SECONDARY W	ATER (B	UILDING)		
SERVICE	LOCATION	CAPACITY (MBH)	FLOWRATE (GPM)	EWT (°F)	LWT (°F)	MAX WPD (PSI)	FLOWRATE (GPM)	EWT (°F)	LWT (°F)	MAX WPD (PSI)	BASIS OF DESIGN
HILLED WATER	MECHANICAL ROOM	421.8	70	42	54	10	70	56	44	10	B&G AP64

L BE BY AHRI-400

8

				AIF	R DEVICES			
DESIG	TYPE (SEE SPEC)	SERVICE	AIRFLOW MIN CFM	W RANGE MAX CFM	NOMINAL SIZE (IN)	INLET/NECK SIZE (IN)	BASIS OF DESIGN	REMARKS
1	LBG	SUPPLY	0	95	6 x 4	6 x 4	TITUS 300RL SERIES	
2	LR	RETURN	120	300	(2) 3/4" SLOTS 48" LENGTH	6"	TITUS TBR SERIES	
3	CD	SUPPLY	0	100	24 x 24	6"ø	TITUS OMNI SERIES	
4	CR	RETURN	105	205	24 x 24	8"ø	TITUS OMNI SERIES	
5	LS	SUPPLY	0	50	(2) 3/4" slots	4" WIDTH	TITUS ML SERIES	AIRFLOW RANGE IS IN CFM/F
6	LS	SUPPLY	0	50	(2) 3/4" slots	4" WIDTH	TITUS CT SERIES	AIRFLOW RANGE IS IN CFM/F
7	CR	RETURN	0	200	24 x 24	8"ø	TITUS OMNI	
8	LS	SUPPLY	50	90	(2) 3/4" SLOTS 24" LENGTH	8"ø	TITUS TBD SERIES	
9	LS	SUPPLY	90	170	(2) 3/4" SLOTS 48" LENGTH	8"ø	TITUS TBD SERIES	

		HOT W	ATER PRO	OPELLER A	ND CABI	NET UNI	T HEATE	ERS		
	TVDE				WATER			ELECTRICAL		
DESIG	TYPE (SEE SPEC)	LOCATION	MIN CAPACITY (MBH)	AIRFLOW (CFM)	FLOWRATE (GPM)	MAX WPD (FT HD)	LOAD (VA)	VOLTS (V)	РН	REMARKS
CUH-1		MECHANICAL ROOM	30.0	800	5.0	0.0	300.0	120	1	
CUH-2		MECHANICAL ROOM	31.0	800	5.2	0.0	300.0	120	1	
UH-1		MECHANICAL ROOM	26.5	350	2.6	0.0	150.0	120	1	
UH-2		MECHANICAL ROOM	40.8	600	4.1	0.0	150.0	120	1	

9

		AIR SEPARA	TORS				
DESIG	LOCATION	SERVICE	SIZE (INLET X OUTLET) (IN)	FLOW RATE (GPM)	VOLUME (GAL)	NOTES	
AS-CHW	MECHANICAL ROOM	CHILLED WATER SYSTEM		70.0	7.0		
AS-HW	MECHANICAL ROOM	HEATING HOT WATER SYSTEM		40.0	7.0		

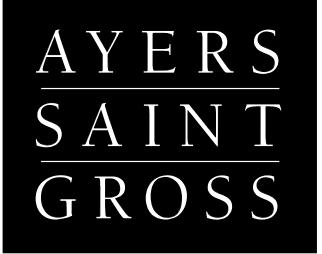
10

11

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

SCHEDULES


DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: 12" = 1'-0" JOB NO.: 21641.00 DRAWN BY: CBH

NOT FOR CONSTRUCTION

INTERFAITH CENTER	CHAPEL
	N

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

TOWSON, MD 21204 410.494.1111 www.kibart.com

KIBART 901 DULANEY VALLEY ROAD, SUITE 301

7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com COMMISSIONING

www.asg-architects.com IT / AV / SECURITY SPEXSYS

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

www.morabitoconsultants.com CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

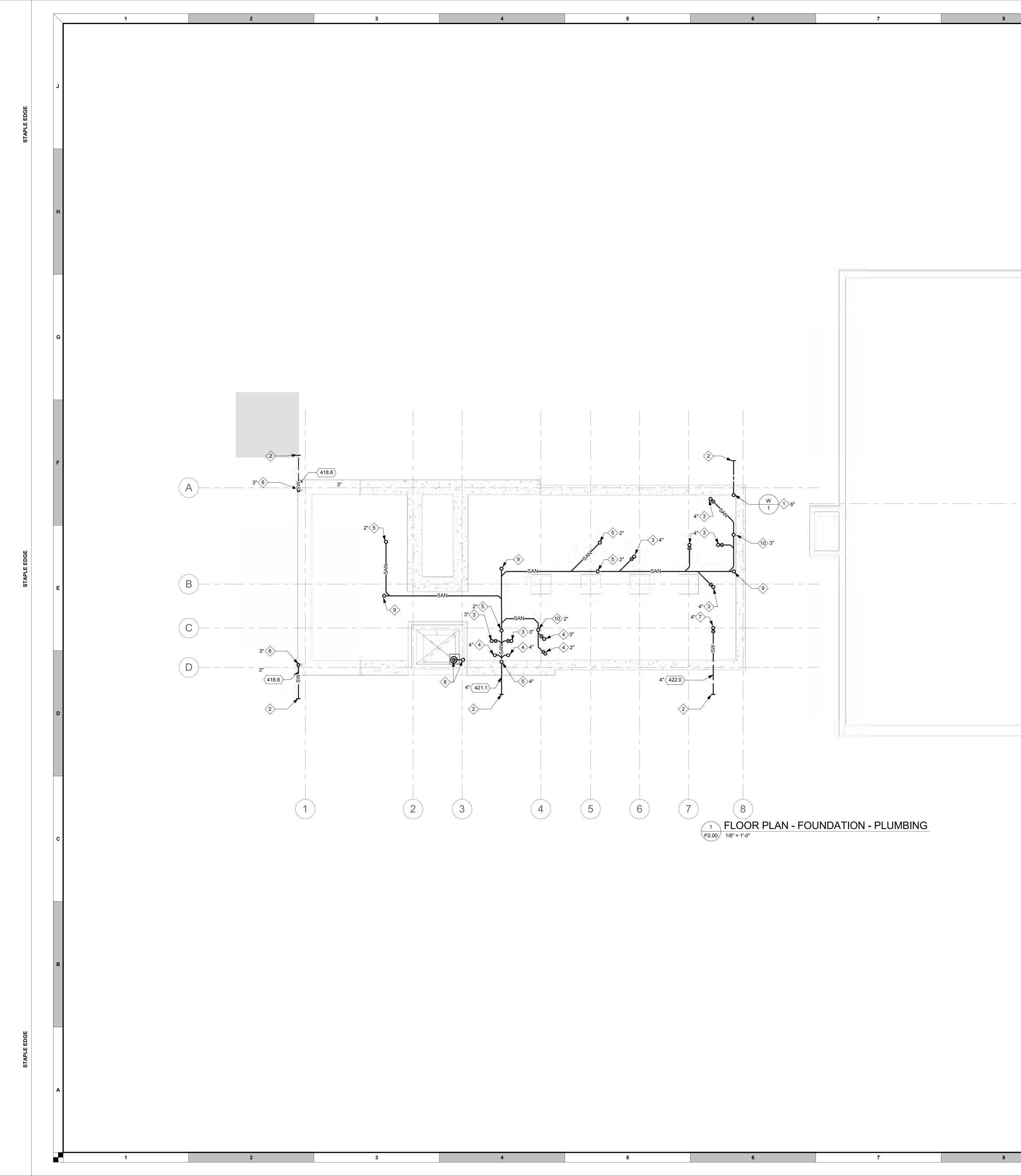
STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

300 EAST JOPPA ROAD, SUITE 200

www.muellerassoc.com

LINTHICUM, MD 21090 410.646.4500

www.asg-architects.com MUELLER ASSOCIATES


410.347.8500 M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

PROJECT TEAM

DRAWING NOTES:

10

9

- A. REFER TO DRAWING M0.01 FOR LEGEND, ABBREVIATIONS AND DRAWING CONVENTIONS.
- B. EXISTING CONDITIONS SHOWN ARE BASED ON LIMITED FIELD SURVEY AND EXISTING DOCUMENTATION. CONTRACTOR SHALL FIELD VERIFY ALL CONDITIONS, INDICATED OR OTHERWISE.

11

- C. UNLESS OTHERWISE NOTED, PIPING AND DUCTWORK SHOWN IS CONCEALED ABOVE CEILING.
- D. COORDINATE ALL DEMOLITION WORK WITH NEW WORK CONSTRUCTION.

- 1 COMBINATION WATER SERVICE UP THROUGH SLAB. LOCATE MINIMUM OF 48" BELOW FINISHED GRADE TO TOP OF PIPE. REFER TO DETAIL FOR CONTINUATION. 2 REFER TO CIVIL PLANS FOR CONTINUATION.
- 3 SAN FROM TO FLOOR/TRENCH DRAIN.
- 4 SAN THROUGH SLAB FROM FIXTURE(S) ON FLOOR ABOVE.
- 5 SAN THROUGH SLAB FROM FLOOR ABOVE.
- 6 SW FROM DOWNSPOUT BOOT.
- 7 SW FROM FLOOR DRAIN.
- 8 SWPD FROM ELEVATOR PIT SUMP PUMP WITH CHECK AND SHUT-OFF VALVES IN VERTICAL. PROVIDE PUMP IN 24" SQUARE BY 36" DEEP BASIN INTEGRAL WITH CONCRETE PIT. REFER TO DETAIL.
- 9 UP TO FLOOR CLEANOUT

E.E

9

10

10 VP UP THROUGH SLAB FROM SAN.

© COPYRIGHT AYERS SAINT GROSS, 2017

IF DRAWING IS REDUCED, USE GRAPHIC SCALE 8' 0' 4'

11

1/8" = 1'-0"

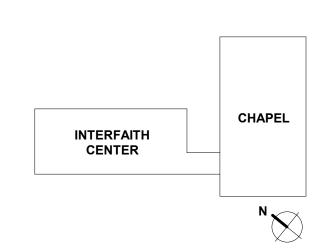
DRAWING NUMBER

FLOOR PLAN - FOUNDATION PLUMBING

DRAWING NAME

PROJECT DESIGN PHASE DOCUMENTS

50% CONSTRUCTION


ISSUE DATE: 04/28/17 SCALE: 1/8" = 1'-0" JOB NO.: 21641.00 DRAWN BY: Author

CONSTRUCTION

DRAWING INFORMATION

NOT FOR

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING

410.712.0390 www.spexsys.com

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

410.467.2377

www.morabitoconsultants.com **CIVIL ENGINEER**

WBCM

300 EAST JOPPA ROAD, SUITE 200

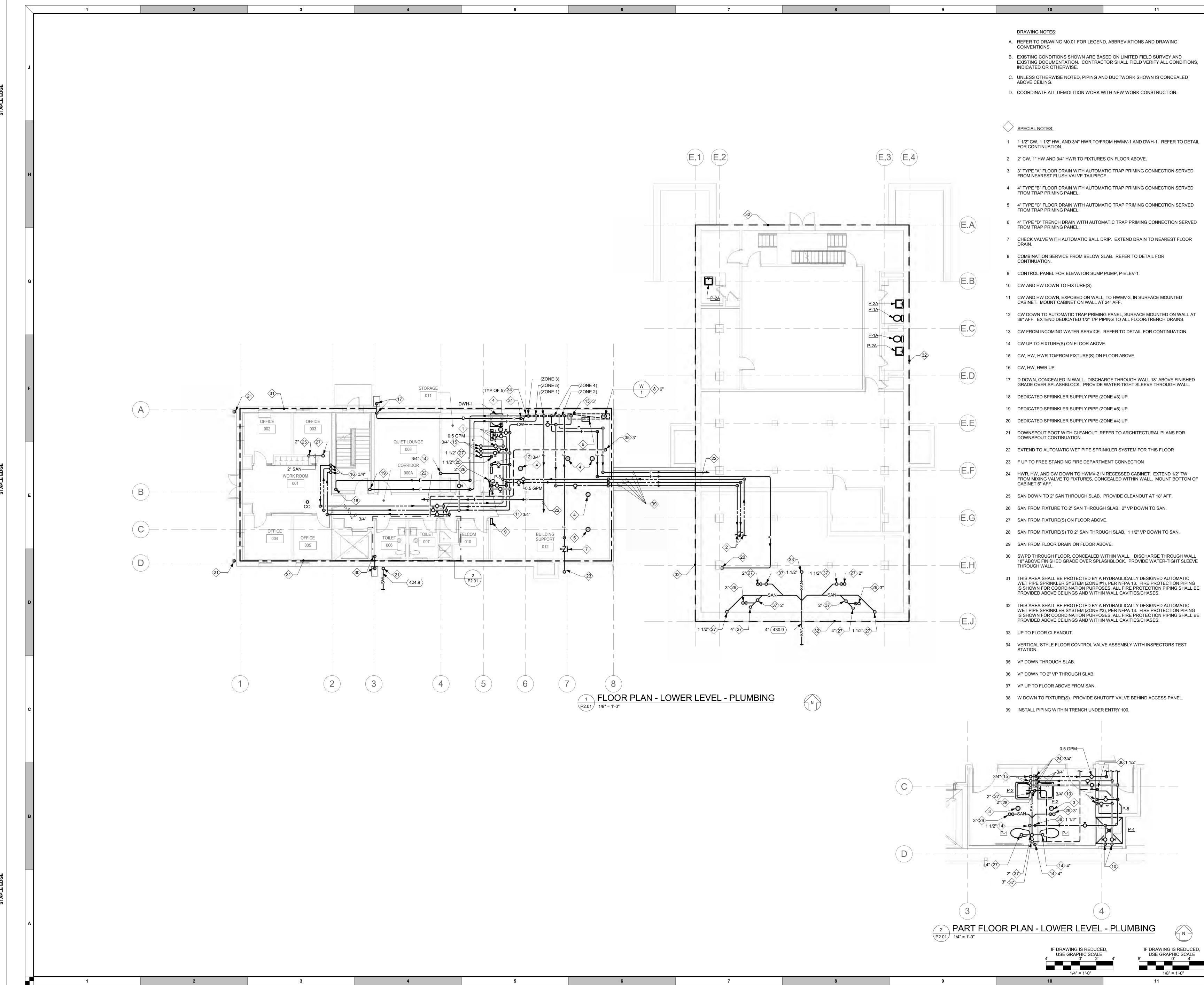
BALTIMORE, MD 21286

410.512.4500

www.wbcm.com

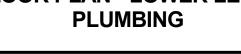
LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076


410.347.8500 www.asg-architects.com

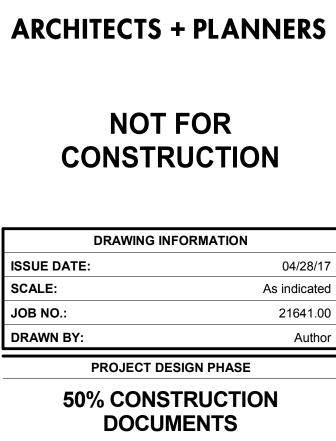
ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

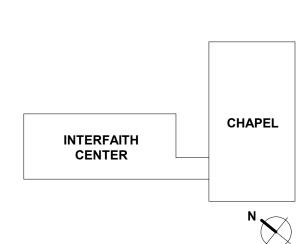
PROJECT TEAM


PROJECT INFORMATION GOUCHER —college—









AYERS SAINT GROSS

	REVISIONS	
REV. #	DESCRIPTION	DATE
		•
	KEY PLAN	

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT KOFFEL ASSOCIATES

8815 CENTRE PARK DRIVE, SUITE 200

COLUMBIA, MD 21045

410.750.2246

www.koffel.com

COMMISSIONING

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY

SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT

952 RIDGEBROOK ROAD, SUITE 1700

PROJECT TEAM

ARCHITECT AYERS SAINT GROSS

1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230 410.347.8500

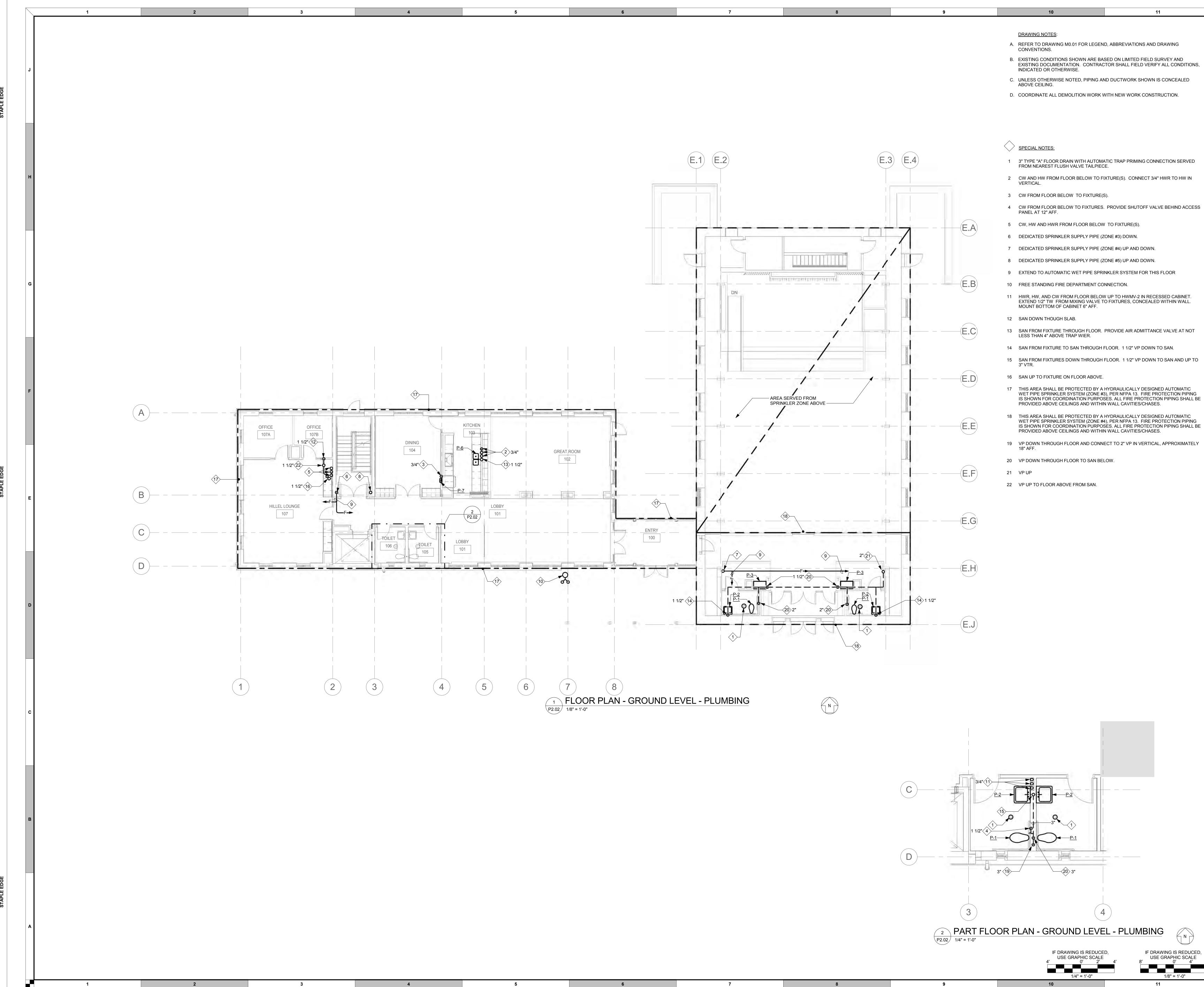
www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER

MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

410.646.4500


www.muellerassoc.com

STRUCTURAL ENGINEER

MORABITO CONSULTANTS

PROJECT INFORMATION GOUCHER —college—

- EXTEND 1/2" TW FROM MIXING VALVE TO FIXTURES, CONCEALED WITHIN WALL.

- 15 SAN FROM FIXTURES DOWN THROUGH FLOOR. 1 1/2" VP DOWN TO SAN AND UP TO
- 17 THIS AREA SHALL BE PROTECTED BY A HYDRAULICALLY DESIGNED AUTOMATIC WET PIPE SPRINKLER SYSTEM (ZONE #3), PER NFPA 13. FIRE PROTECTION PIPING IS SHOWN FOR COORDINATION PURPOSES. ALL FIRE PROTECTION PIPING SHALL BE
- 18 THIS AREA SHALL BE PROTECTED BY A HYDRAULICALLY DESIGNED AUTOMATIC WET PIPE SPRINKLER SYSTEM (ZONE #4), PER NFPA 13. FIRE PROTECTION PIPING
- 19 VP DOWN THROUGH FLOOR AND CONNECT TO 2" VP IN VERTICAL, APPROXIMATELY

DRAWING NUMBER

DRAWING NAME

DOCUMENTS

PROJECT DESIGN PHASE

DRAWN BY: **50% CONSTRUCTION**

04/28/17 As indicated 21641.00 CJS

NOT FOR CONSTRUCTION

DRAWING INFORMATION

ISSUE DATE:

SCALE:

JOB NO.:

CHAPEL INTERFAITH CENTER

REV. #	DESCRIPTION	DATE
		•
		·
<u> </u>		•
	KEY PLAN	

REVISIONS

901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING KIBART

HANOVER, MD 21076 410.712.0390 www.spexsys.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

410.347.8500 www.asg-architects.com

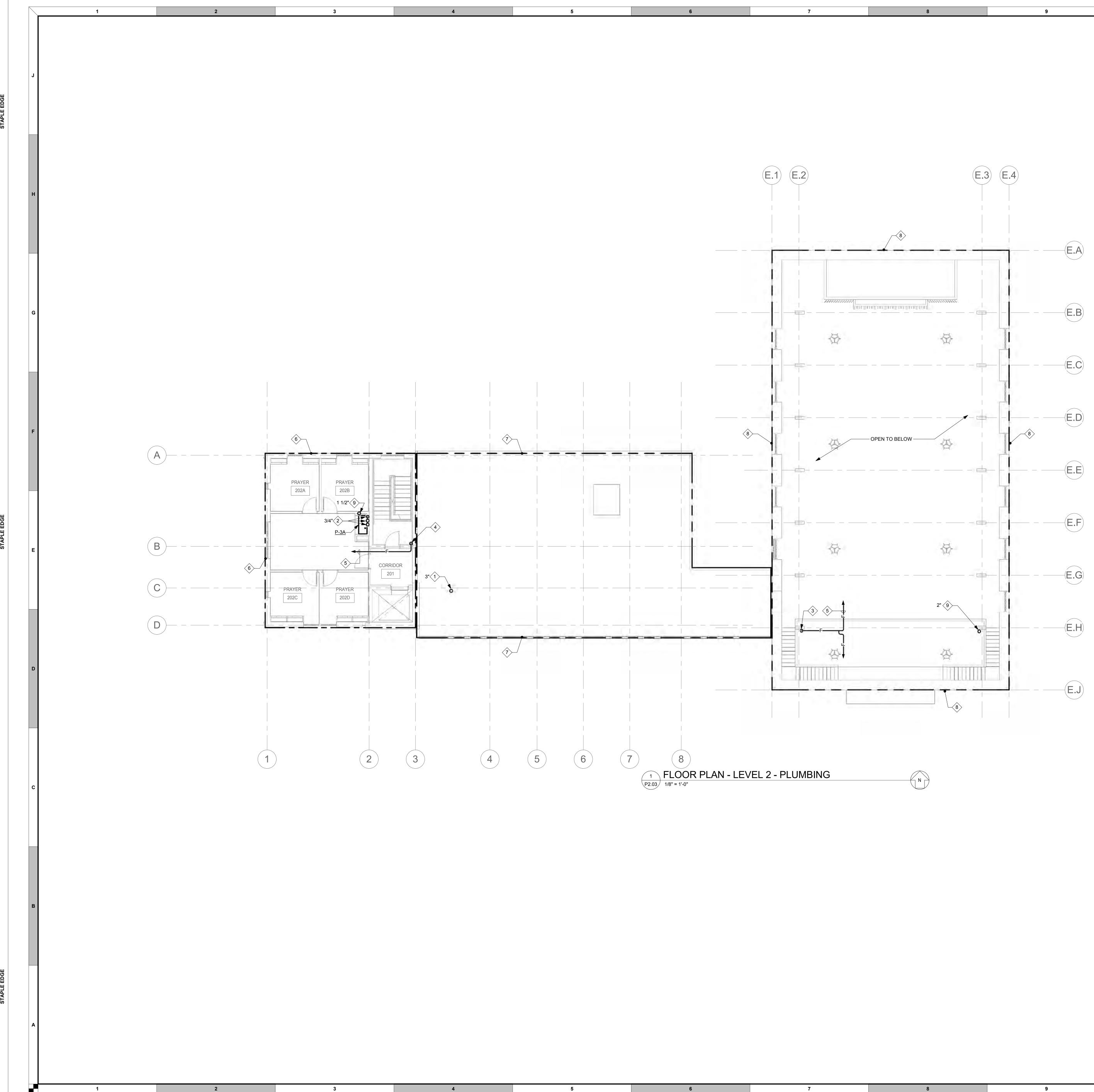
BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

MUELLER ASSOCIATES LINTHICUM, MD 21090

410.347.8500 www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100


BALTIMORE, MD 21230

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

PROJECT TEAM

DRAWING NOTES:

10

- A. REFER TO DRAWING M0.01 FOR LEGEND, ABBREVIATIONS AND DRAWING CONVENTIONS.
- B. EXISTING CONDITIONS SHOWN ARE BASED ON LIMITED FIELD SURVEY AND EXISTING DOCUMENTATION. CONTRACTOR SHALL FIELD VERIFY ALL CONDITIONS, INDICATED OR OTHERWISE.

11

- C. UNLESS OTHERWISE NOTED, PIPING AND DUCTWORK SHOWN IS CONCEALED ABOVE CEILING.
- D. COORDINATE ALL DEMOLITION WORK WITH NEW WORK CONSTRUCTION.

SPECIAL NOTES:

1 3" VTR

- 2 CW, HW AND HWR FROM FLOOR BELOW TO FIXTURE(S).
- 3 DEDICATED SPRINKLER SUPPLY PIPE (ZONE #4) DOWN.
- 4 DEDICATED SPRINKLER SUPPLY PIPE (ZONE #5) DOWN.
- 5 EXTEND TO AUTOMATIC WET PIPE SPRINKLER SYSTEM FOR THIS FLOOR
- 6 THIS AREA SHALL BE PROTECTED BY A HYDRAULICALLY DESIGNED AUTOMATIC WET PIPE SPRINKLER SYSTEM (ZONE #5), PER NFPA 13. FIRE PROTECTION PIPING IS SHOWN FOR COORDINATION PURPOSES. ALL FIRE PROTECTION PIPING SHALL BE PROVIDED ABOVE CEILINGS AND WITHIN WALL CAVITIES/CHASES.
- 7 THIS AREA SHALL BE PROTECTED BY A HYDRAULICALLY DESIGNED AUTOMATIC WET PIPE SPRINKLER SYSTEM (ZONE #3), PER NFPA 13. FIRE PROTECTION PIPING IS SHOWN FOR COORDINATION PURPOSES. ALL FIRE PROTECTION PIPING SHALL BE PROVIDED ABOVE CEILINGS AND WITHIN WALL CAVITIES/CHASES.
- 8 THIS AREA SHALL BE PROTECTED BY A HYDRAULICALLY DESIGNED AUTOMATIC WET PIPE SPRINKLER SYSTEM (ZONE #4), PER NFPA 13. FIRE PROTECTION PIPING IS SHOWN FOR COORDINATION PURPOSES. ALL FIRE PROTECTION PIPING SHALL BE PROVIDED ABOVE CEILINGS AND WITHIN WALL CAVITIES/CHASES.
- 9 VP DOWN THROUGH FLOOR AND UP TO 3" VTR.

© COPYRIGHT AYERS SAINT GROSS, 2017

IF DRAWING IS REDUCED, USE GRAPHIC SCALE 8' 0' 4'

11

10

1/8" = 1'-0"

PLUMBING

DRAWING NUMBER

FLOOR PLANS - LEVEL 2 -

DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE

50% CONSTRUCTION

DRAWING INFORMATION ISSUE DATE: 04/28/17 1/8" = 1'-0" SCALE: JOB NO.: 21641.00 DRAWN BY: Author

NOT FOR CONSTRUCTION

INTERFAITH CENTER	CHAPEL
	N

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

TOWSON, MD 21204

KIBART

COMMISSIONING

410.712.0390 www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

www.morabitoconsultants.com CIVIL ENGINEER WBCM

BALTIMORE, MD 21286

410.512.4500

www.wbcm.com

LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

www.asg-architects.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076

300 EAST JOPPA ROAD, SUITE 200

1306 CONCOURSE DRIVE, SUITE 100

PROJECT TEAM

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230 410.347.8500

www.asg-architects.com

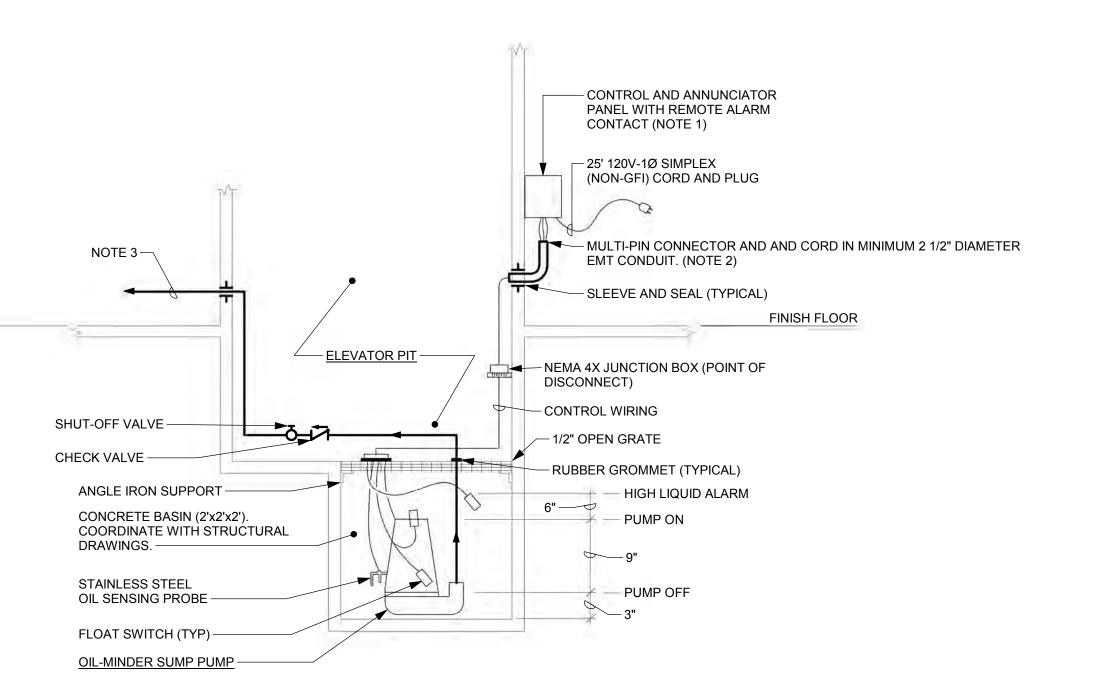
M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

PROJECT INFORMATION GOUCHER —college—

	STAPLE EDGE	J		
		н		
		G		
		F		
	STAPLE EDGE	E		
		D		
		с		
C:\Users\CBH\Documents\GOUCHER_CHAPEL_MEP_R17_cbh.rvt		в		
4/27/2017 2:20:51 PM C:\Users\CBH\Do	STAPLE EDGE	A	1	2

1

3


3

5

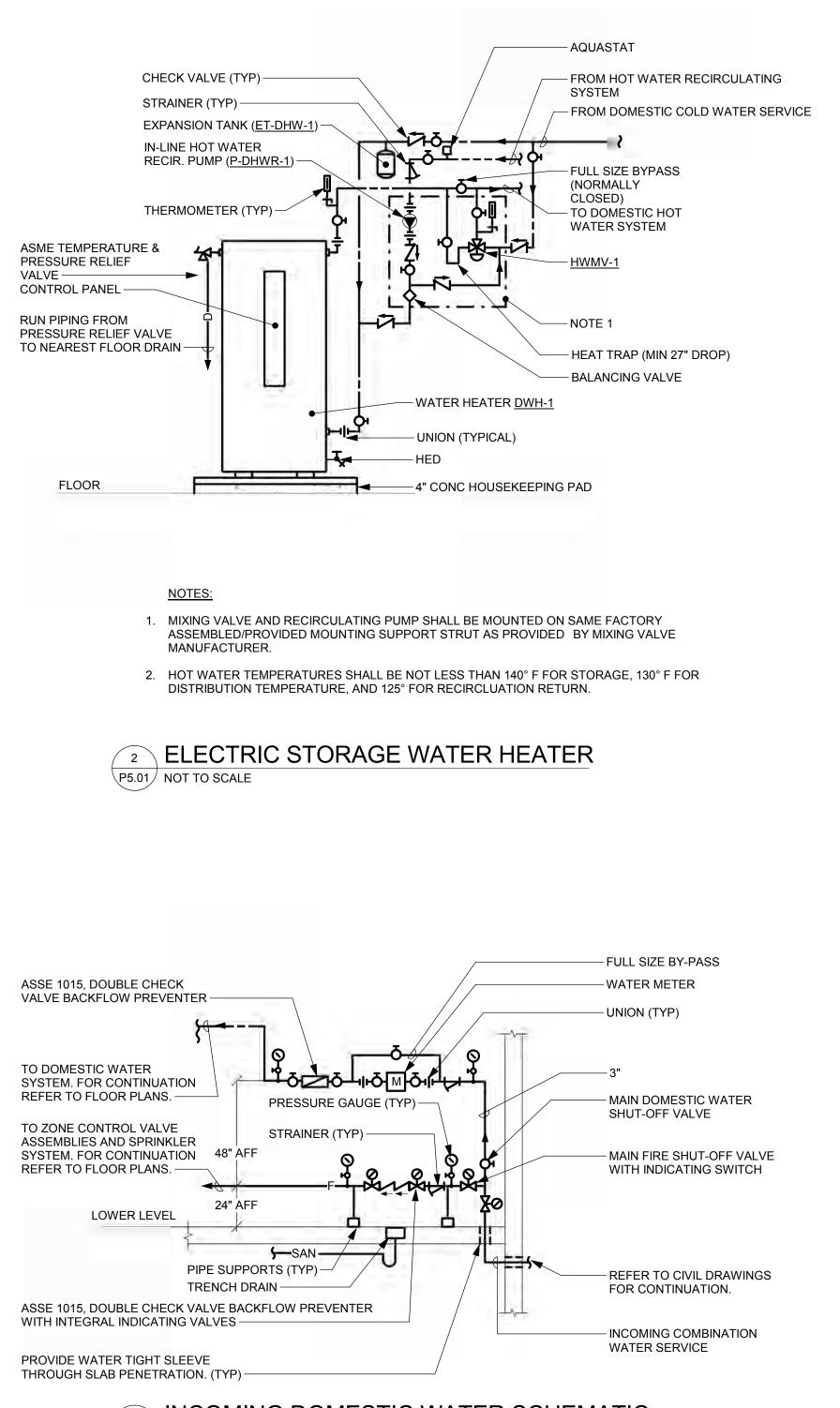
6

4

7

10

11


NOTES:

8

- 1. LOCATION OF THE CONTROL PANEL, CORD AND OUTLET SHALL BE AS ACCEPTABLE BY THE ELEVATOR INSPECTOR.
- 2. CONTRACTOR SHALL COORDINATE REQUIRED LENGTH OF CORD, WIRING, CONDUIT, ETC. FOR PROJECT CONDITIONS.
- 3. FOR EXACT ROUTING OF SWPD PUMPED DISCHARGE PIPING REFER TO FLOOR PLANS.

9

1 ELEVATOR PIT "OIL MINDER" SUMP PUMP P5.01 NOT TO SCALE

3 INCOMING DOMESTIC WATER SCHEMATIC P5.01 NOT TO SCALE

9

10

11

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

DETAILS

DRAWING INFORMAT	ΓΙΟΝ				
ISSUE DATE:	04/28/17				
SCALE:	1/8" = 1'-0"				
JOB NO.:	21641.00				
DRAWN BY:	Author				
PROJECT DESIGN PHASE					
50% CONSTRUCTION DOCUMENTS					
DRAWING NAME					

NOT FOR CONSTRUCTION

INTERFAITH CENTER	CHAPEL
	N

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

www.spexsys.com COMMISSIONING KIBART TOWSON, MD 21204 410.494.1111 www.kibart.com

901 DULANEY VALLEY ROAD, SUITE 301

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045

410.750.2246

www.koffel.com

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

HANOVER, MD 21076 410.712.0390

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER SPARKS, MD 21152

1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

410.467.2377

www.morabitoconsultants.com CIVIL ENGINEER

WBCM

300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER

MUELLER ASSOCIATES

410.347.8500

GOUCHER —college—

C:\Users\CBH\Documents\GOUCHER_CHAPEL_MEP_R17_cbh.rvt	
4/27/2017 2:20:58 PM	

STAPLE EDGE	J					
	н					
	G					
	F					
STAPLE EDGE	E					
	D					
	с					
	в					
STAPLE EDGE	А					
		1	·	2	3	

2

3

4

4

5

6

7

8

5

6

<u>NOTES</u>					
1. P	ROVIDE	WITH MAXIMUM 110° F HOT WATER \	/IA ASSE 1070 T	HERMOSTATIC	; MĽ
2. N	IOUNT TH	IERMOSTATIC MIXING VALVE IN REC	ESSED CABINE	T. MOUNT BOT	тог
3. N	IOUNT TH	IERMOSTATIC MIXING VALVE EXPOS	ED ON WALL U	NDER EXISTING	FI)
4. P	ROVIDE	WITH ASSE 1016 PRESSURE AND TE	MPERATURE BA	LANCING MIXIN	IG \
5. P	ROVIDE	WITH ASSE 1071 TEPID WATER MIXIN	NG VALVE PER A	NSI Z358.1 STA	ND
6. P	ROVIDE	CONNECTION IN CW SUPPLY TO OUT	LET BOX WITH	ASSE 1024 DUA	AL C
7. E	XISTING	FIXTURE, PROVIDE NEW FAUCET AN	ID CONNECT TO	EXISTING WAT	ER
			FIXTURE UNITS		
DES	IG	DESCRIPTION	WASTE	WATER	
P-'	1	WATER CLOSET	4	10	
P-1	A	WATER CLOSET	4	10	
P-2	2	LAVATORY	2	2	
P-2	A	LAVATORY	2	2	
P-3	3	ABLUTION SINK	2	2	
P-3	A	ABLUTION SINK	2	2	
P-4	1	SHOWER	2	1.4	
P-{	P-5 EMERGENCY EYE/FACE WASH		0	0	
P-6	6	KITCHENETTE SINK	2	1.4	
P-7	7	REFRIGERATOR OUTLET BOX		0.25	
P-8	`		3	3	
1-0	3	MOP RECEPTOR	5	5	

7

	PUMPS - PLUMBING								
DESIG	LOCATION	SERVICE	WATER FLOWRATE (GPM)	HEAD (FT HD)	MOTOR HP	ELE VOLTS	ECTRIC PH	AL HZ	NOTES
P-DWHR-1	012 BUILDING SUPPORT	DOMESTIC HOT WATER	5.0	15.0	0.5	120	1	60	
P-ELEV-1	ELEVATOR	ELEVATOR SUMP	50.0	25.0	0.5	120	1	60	PUMP CONTROLLER LOCATED IN 012 BUILDING SUPPORT.

		CONN	ECTION	
DESIG	DESCRIPTION	SYSTEM	SIZE (IN)	REI
FD-A	TOILET ROOM FLOOR DRAIN	SAN	3"	
FD-B	MECHANICAL ROOM FLOOR DRAIN	SAN	4"	
FD-C	CONDENSATE FLOOR DRAIN	SW	4"	PR
FD-D	TRENCH DRAIN	SAN	4"	

DOMESTIC HOT WATER MIXING VALVES									
DESIG	LOCATION	SERVICE	GPM	HOT WATER TEMP. (°F)	MAX. PRESSURE DROP (PSI)	HEAT TRAP	REMARKS		
HWMV-1	BUILDING SUPPORT 012	DOMESTIC HOT WATER DWH-1	20	130	10	27"	ASSE 1017.		
HWMV-2	TOILET	LAVATORIES	0.5	110	10		ASSE 1070.		
HWMV-3	BUILDING SUPPORT 012	P-5 EMERGENCY FIXTURES	5	85	10		ASSE 1071.		

DESIG	LOCATION	SERVICE	TANK VOLUME (GALLONS)	ACCEPTANO VOLUME (GALLONS
ET-DHW-1	MER	DOMESTIC HOT WATER	16	8

DESIG	STORAGE (GAL.)	RECOVERY @ 100°F RISE (GPH)	KW TOTAL (MAX)	VOLTS/PHASE
DWH-1	65	37	9	208/3/60

PLUMBING FIXTURE SCHEDULE

9

C MIXING VALVE TOM OF CABINET 18" AFF.

G FIXTURE.

8

NG VALVE AND HANDHELD SHOWER HEAD ANDARD

AL CHECK VALVE BACKFLOW PREVENTER LOCATED EXPOSED ON WALL UNDER OUTLET BOX. TER SUPPLY ROUGH-INS

ROUGH-IN CONNECTION (IN)					
SAN	VENT	CW	HW	тw	REMARKS
4"	2"	1"			FLOOR MOUNTED, BARRIER FREE, SENSOR OPERATED FLUSH VALVE; 1.28 GPF
3"	1 1/2"	1/2"		FLOOR MOUNTED, BARRIER FREE, FLUSH TANK; 1.28 GPF	
1 1/2"	1 1/2"	1/2"	1/2"	1/2" WALL MOUNTED, BARRIER FREE, SENSOR OPERATED, NOTE 1 AND 2.;	
1 1/2"	1 1/2"	1/2"	1/2"		NOTE 2 AND 7; 0.5 GPM
2"	1 1/2"	1/2"	1/2"		FLOOR MOUNTED, BARRIER FREE, MANUALLY OPERATED, NOTE 1
1 1/2"	1 1/2"	1/2"	1/2"		FLOOR MOUNTED, BARRIER FREE, MANUALLY OPERATED, NOTE 1
2"	1 1/2"	1/2"	1/2"		NOTE 4; 1.5 GPM
1 1/2"	1 1/2"			1/2" NOTE 5. MOUNT MIXING VALVE IN SURFACE MOUNTED CABINET	
1 1/2"	1 1/2"	1/2"	1/2"		UNDERCOUNTER MOUNTED, BARRIER FREE; 1.5 GPM
		1/2"			WALL MOUNTED, RECESSED, MOUNT 48" ABOVE FLOOR. NOTE 6
 3"	1 1/2"	1/2"	1/2"	1/2"	FLOOR MOUNTED WITH EMERGENCY EYEWASH SPRAYER; NOTE 5

10

11

FLOOR DRAINS

MARKS

ROVIDE WITH RAISED COLLAR AND FUNNEL

EXPANSION TANKS					
ANCE ME NS)	FILL PRESSURE (PSIG)	RELIEF VALVE SETTING (PSIG)	EQUALIZER PIPE SIZE (IN)	NOTES	
	80	125	3/4	B.O.D. AMTROL SERIES ST	

ELECTRIC STORAGE WATER HEATER						
NOTES						

9

11

10

© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

SCHEDULES


DRAWING NAME

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: Author PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
		·
		,
	KEY PLAN	

CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

LANDSCAPE ARCHITECT BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY

HANOVER, MD 21076 410.712.0390

www.spexsys.com

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

www.morabitoconsultants.com **CIVIL ENGINEER** WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100

952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152 410.467.2377

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

PROJECT TEAM

PROJECT INFORMATION GOUCHER —college—

STAPLE EDGE

1

1	2	3
	ABBREVIATIONS	
A AC ACU AF AFF AFG AHU AIC ARCH AT ATC AWG A/V BLDG	AMPERES ALTERNATING CURRENT AIR CONDITIONING UNIT AMPERES FRAME ABOVE FINISHED FLOOR ABOVE FINISHED GRADE AIR HANDLING UNIT AMPERES INTERRUPTING CAPACITY ARCHITECTURAL AMPERES TRIP AUTOMATIC TEMPERATURE CONTROL AMERICAN WIRE GAGE AUDIOVISUAL BUILDING	
C CB CKT CLG CPT CT CX	CONDUIT CIRCUIT BREAKER CIRCUIT CEILING CONTROL POWER TRANSFORMER CURRENT TRANSFORMER CONNECT TO EXISTING	
DC DESIG DN DWG DX	DIRECT CURRENT DESIGNATION DOWN DRAWING DISCONNECT EXISTING	
EA EC EF EH ELEC EMH EMT EQUIP EWC EHW EX	EXHAUST FAN ELECTRIC HEATER ELECTRIC ELECTRIC MANHOLE ELECTRICAL METALLIC TUBING EQUIPMENT ELECTRIC WATER COOLER	
F FDAS FDR FLA FMC FS FT FVNR GFCI	FUSIBLE SWITCH	
GND HID HOA HP HPS HTR HV HZ	GROUND HIGH INTENSITY DISCHARGE HAND-OFF-AUTOMATIC HORSEPOWER HIGH PRESSURE STEAM	
IMC JB	INTERMEDIATE METAL CONDUIT	
KCMIL KV KVA KW	THOUSAND CIRCULAR MILS KILOVOLT(S) KILOVOLT-AMPERE(S) KILOWATT(S)	
LFMC LTG MAFC MCB MCC MCP MH MLO MOA MS MTD MV	LIQUIDTIGHT FLEXIBLE METAL CONDUIT LIGHTING MAKE ALL FINAL CONNECTIONS MAIN CIRCUIT BREAKER MOTOR CONTROL CENTER MOTOR CIRCUIT PROTECTOR MOUNTING HEIGHT (TO CENTERLINE OF DEVICE UNLESS OTHERWISE NOTED) MAIN LUGS ONLY MULTI-OUTLET ASSEMBLY MANUAL SWITCH MOUNTED MEDIUM VOLTAGE	
N NC NEC NEMA NFS NIC NO	NEUTRAL NORMALLY CLOSED NATIONAL ELECTRICAL CODE NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION NON-FUSED SWITCH NOT IN CONTRACT NORMALLY OPEN	
OL P PH PNL PVC	OVERLOAD POLE PHASE PANEL POLYVINYL CHLORIDE	
RECEPT REQ'D RF RMC RM(S) RVAT RX	RECEPTACLE(S) REQUIRED RETURN FAN RIGID METAL CONDUIT ROOMS	
SF SMR SWBD SWGR	SUPPLY FAN SURFACE METAL RACEWAY SWITCHBOARD SWITCHGEAR	
TA TTB TTC TYP	TRIP AMPERES TELEPHONE TERMINAL BOARD TELEPHONE TERMINAL CABINET TYPICAL	
UG UH UON	UNDERGROUND UNIT HEATER UNLESS OTHERWISE NOTED	
V VA VT VFC	VOLT(S) VOLT-AMPERE(S) VOLTAGE TRANSFORMER VARIABLE FREQUENCY CONTROLLER	
W W/ WP	WIRE WITH WEATHERPROOF	
XFMR	TRANSFORMER	

3

4

p o

—

1-0-1

1

 \odot

OS

vs.

PC

TC

С

Φ

Ð

Ø FB FB

J

 \bigcirc

Termin

1000 O Ø

Θ

©́⊘́≥ ₽

Ъ E۲

T VFC

T_M

3

2

 Φ_{xx}^{xx}

5

SYMBOLS

6

	I	
LIGHTING		FIRE DETECTION AND ALARM
SINGLE POLE SWITCH MOUNTED 48" ABOVE FINISHED FLOOR, UNLESS OTHERWISE NOTED SUBSCRIPTS AS FOLLOWS:	P SMO	
 3 - THREE WAY SWITCH 4 - FOUR WAY SWITCH D - DIMMER SWITCH 	 	P - PHOTOELECTRICBT - BEAM TRANSMITTERBR - BEAM RECEIVER
DS - COMBINATION OCCUPANCY/DIMMER SWITCH OS - OCCUPANCY SENSOR		CT SMOKE DETECTOR
P - SWITCH WITH PILOT LIGHT T - TIME SWITCH		T DETECTOR R/F - COMBINATION RATE OF RISE AI
WP - SWITCH WITH WEATHERPROOF COVER a - LOWER CASE LETTER INDICATES SWITCH LEG		R/C - RATE COMPENSATION F - FIXED TEMPERATURE
LIGHTING FIXTURE LIGHTING FIXTURE, PENDANT MOUNTED	F MAI	R - RATE OF RISE
LIGHTING FIXTURE, WALL MOUNTED		DIBLE DEVICE MOUNTED 6" BELOW CEILING C
INDUSTRIAL LIGHTING FIXTURE		OBE LIGHT MOUNTED 6" BELOW CEILING OR
LIGHTING TRACK LIGHTING FIXTURE, TRACK MOUNTED		BSCRIPTED NUMBER INDICATES LUMINOUS I //BINATIONAL AUDIBLE DEVICE AND STROBE
LIGHTING FIXTURE, CEILING MOUNTED		ICHEVER IS LOWER (SUBSCRIPTED NUMBER HT IN CANDELAS)
LIGHTING FIXTURE, WALL MOUNTED	WF FLC	W SWITCH CONNECTION
LIGHTING FIXTURE, WALL WASHER	VS VAL	VE TAMPER SWITCH CONNECTION
DECORATIVE LIGHTING FIXTURE, PENDANT MOUNTED	9 MAG	GNETIC DOOR HOLDER
DECORATIVE LIGHTING FIXTURE, SURFACE MOUNTED EXIT SIGN - BACK MOUNTED WITH DIRECTIONAL INDICATORS AS SHOWN		CELLANEOUS BOXES AND DEVICES FACP - FIRE ALARM CONTROL PANEL
EXIT SIGN - TOP OR PENDANT MOUNTED, SINGLE FACE WITH DIRECTIONAL INDICATORS AS SHOWN		FAA - FIRE ALARM ANNUNCIATOR PANEL ESR - ELEVATOR STATUS/RECALL
EXIT SIGN - TOP OR PENDANT MOUNTED, DOUBLE FACE WITH DIRECTIONAL INDICATORS AS SHOWN		FPS - FIRE PUMP STATUS EGS - EMERGENCY GENERATOR STATUS
EMERGENCY LIGHTING UNIT MOUNTED 90" AFF OCCUPANCY SENSOR, CEILING MOUNTED - ARROWS INDICATE DIRECTION OF SENSOR BEAM AIMING		
OCCUPANCY SENSOR, WALL MOUNTED - ARROWS INDICATE DIRECTION OF SENSOR BEAM AIMING PHOTOELECTRIC CONTROL SWITCH		TELECOMMUNICATIO
TIMECLOCK		A OUTLET BOX MOUNTED 18" AFF, WITH 1" C
CONTACTOR MOUNTED 5'-6" TO TOP OF ENCLOSURE	_	CE OUTLET BOX MOUNTED 18" AFF, WITH 1" C
		A OUTLET BOX MOUNTED IN FLOOR, WITH 1"
	VOI	CE OUTLET BOX MOUNTED IN FLOOR, WITH 1
POWER - FLOOR PLANS	· F	CIALTY VOICE OUTLET P - PAY STATION MOUNTED 48" AFF, WITH 1 ¹
SINGLE RECEPTACLE MOUNTED 18" AFF, UNLESS OTHERWISE NOTED	l	W - WALL PHONE MOUNTED 48" AFF, WITH 1 CE/DATA OUTLET BOX MOUNTED 18" AFF, WI
DUPLEX RECEPTACLE MOUNTED 18" AFF, UNLESS OTHERWISE NOTED SUBSCRIPTS AS FOLLOWS		CE/DATA OUTLET BOX MOUNTED IN FLOOR, V
 E - CONNECTED TO EMERGENCY CIRCUIT G - GROUND FAULT INTERRUPTER TYPE IG - ISOLATED GROUND 	T DAT	A JACK MOUNTED IN PEDESTAL
IG - ISOLATED GROUND WC - WATER COOLER WP - WEATHERPROOF (WET LOCATION)		
84" - MOUNTING HEIGHT AS INDICATED		AKER MOUNTED IN FLUSH CEILING
DUPLEX RECEPTACLE MOUNTED ABOVE COUNTER, 6" ABOVE BACKSPLASH QUAD RECEPTACLE MOUNTED 18" AFF, UNLESS OTHERWISE NOTED		
SPECIAL RECEPTACLE MOUNTED 18" AFF, UNLESS OTHERWISE NOTED (NEMA CONFIGURATION AS INDICATED)	•	UME CONTROL SWITCH MOUNTED 48" AFF
SINGLE RECEPTACLE MOUNTED IN FLOOR		ROPHONE JACK WALL MOUNTED 18" AFF, UN
DUPLEX RECEPTACLE MOUNTED IN FLOOR		EPHONE BACKBOARD
QUAD RECEPTACLE MOUNTED IN FLOOR		BLE TRAY
SPECIAL RECEPTACLE MOUNTED IN FLOOR (NEMA CONFIGURATION AS INDICATED)		
SPECIALTY FLOOR BOX POKE-THRU TYPE FLOOR BOX		POWER (ONE LINE
JUNCTION BOX MOUNTED IN FLOOR	HI GR	OUND
DUPLEX RECEPTACLE MOUNTED FLUSH IN CEILING		ANSFORMER
QUAD RECEPTACLE MOUNTED FLUSH IN CEILING		RRENT TRANSFORMER
CLOCK HANGER OUTLET MOUNTED 90" AFF, UNLESS OTHERWISE NOTED		LTAGE TRANSFORMER
DUPLEX RECEPTACLES MOUNTED IN MULTI-OUTLET ASSEMBLY		ATIONARY CIRCUIT BREAKER
208Y/120V PANELBOARD (SURFACE MOUNTED) 208Y/120V PANELBOARD (FLUSH MOUNTED)		AW-OUT CIRCUIT BREAKER
480Y/277V PANELBOARD (SURFACE MOUNTED)		UNT-TRIP CIRCUIT BREAKER TWORK PROTECTOR
480Y/277V PANELBOARD (FLUSH MOUNTED)		
JUNCTION BOX PROJECTOR CONNECTION. PROVIDE DUPLEX RECEPTACLE		
MOUNTED FLUSH IN CEILING. HEATER CONNECTION		ERMAL OVERLOADS NTACTS
ENGINE GENERATOR SET	М	TER
MOTOR CONNECTION	• • • TR	ANSFER SWITCH
	6	HTNING ARRESTOR
NON-FUSIBLE SWITCH FUSIBLE SWITCH		Y OPERATED MECHANICAL INTERLOCK
MAGNETIC MOTOR STARTER	FU	SED CUTOUT
COMBINATION MAGNETIC MOTOR STARTER	FU	SED DISCONNECT SWITCH
ENCLOSED CIRCUIT BREAKER TRANSFORMER		
VARIABLE FREQUENCY CONTROLLER		
GROUND ROD		
MANUAL MOTOR STARTER MOUNTED 5'-0" AFF UNDERGROUND DUCT BANK		

4

5

7

8

6

8
<u>RM SYSTEMS</u>
AND FIXED TEMPERATURE
G OR 90" AFF, WHICHEVER IS LOWER DR 80" AFF, WHICHEVER IS LOWER S INTENSITY OF OF STROBE LIGHT IN CANDELAS) BE LIGHT MOUNTED 6" BELOW CEILING OR 80" AFF, ER INDICATES LUMINOUS INTENSITY OF STROBE
EL
SC
IONS
C TO ABOVE CEILING " C TO ABOVE CEILING 1" C TO ABOVE CEILING H 1" C TO ABOVE CEILING
I 1" C TO ABOVE CEILING I 1" C TO ABOVE CEILING WITH 1" C TO ABOVE CEILING R, WITH 1" C TO ABOVE CEILING
-
UNLESS OTHERWISE NOTED

7

DRAWING CONVENTIONS DESCRIPTION POINT OF CONNECTION - NEW TO EXISTING DEMOLITION WORK TERMINATION POINT - INDICATES FEEDER - NUMBER INDICATES FEEDER DESIGNATION. REFER TO FEEDER SCHEDULE FOR CONDUCTOR AND CONDUIT SIZE INDICATES SPECIAL NOTE - NUMBER INDICATES SPECIAL NOTE DESIGNATION REFER TO SPECIAL NOTE LIST ON DRAWING FOR DESCRIPTION OF ITEM _____ LIGHTING FIXTURE SWITCH DESIGNATION - LIGHTING FIXTURE TYPE, REFER TO LIGHTING FIXTURE SCHEDULE -DIAGONAL LINE INDICATES EMERGENCY LIGHTING FIXTURE 0 - INDICATES DIRECTION OF CUTTING PLANE - NUMBER OR LETTER INDICATES SECTION OR ELEVATION — DRAWING NUMBER WHERE ELEVATION OR SECTION IS TAKEN OR DRAWN

11

10

. 9

9

SYMBOL

 \mathbf{V}

604

A

XX 🖌

- INDICATES PANELBOARD OR MOTOR CONTROL CENTER DESIGNATION AND CIRCUIT NUMBER - BRANCH CIRCUIT HOME RUN; ARROWHEADS INDICATE NUMBER OF CIRCUITS. INCLUDE ONE EQUIPMENT GROUND CONDUCTOR.

^{FO} T INDICATES WIRE SIZE (AWG OR CIRCULAR MILS) IF OTHER THAN BRANCH CIRCUIT WIRE SIZING STANDARD INDICATED BELOW. EACH BRANCH CIRCUIT SHALL HAVE A DEDICATED NEUTRAL CONDUCTOR.

BRANCH CIRCUIT WIRE SIZING STANDARD

	WIRE	DISTANCE FOR 120V	DISTANCE FOR 277V
EHAX	#12 #10 #8	UP TO 75 FEET UP TO 120 FEET UP TO 190 FEET	UP TO 150 FEET UP TO 260 FEET UP TO 400 FEET
	- NUMBER (OF PANEL OR EQUIPME	NT
	- SECTION	OF BUILDING	
	T = TRAN	20V R CONTROL CENTER	
	- E = EMER S = STANE D = DISTR	DBY	
\frown			ALL OR CEILING IN FINISHED AREAS, EXPOSED IN CUNLESS OTHERWISE NOTED)
5		UNDERGROUND OR UN 4"C UNLESS OTHERWIS	
0	CONDUIT	UP	
	CONDUIT	DOWN	
		NE WEIGHT DESIGNATE ANS, REMOVAL WORK (
	LIGHT LINI REMAIN	E WEIGHT DESIGNATES	EXISTING WORK TO

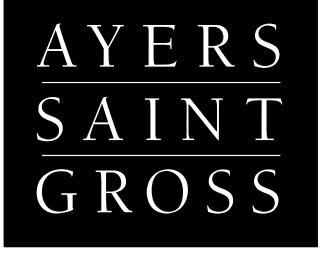
© COPYRIGHT AYERS SAINT GROSS, 2017

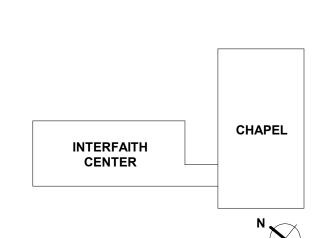
11

10

DRAWING NUMBER

ELECTRICAL LEGEND


DOCUMENTS DRAWING NAME


PROJECT DESIGN PHASE **50% CONSTRUCTION**

DRAWING INFORMATION ISSUE DATE: 01/06/17 1/8" = 1'-0" SCALE: JOB NO.: 21641.00 DRAWN BY: Author

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

COMMISSIONING KIBART

HANOVER, MD 21076 410.712.0390 www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

410.347.8500 www.asg-architects.com

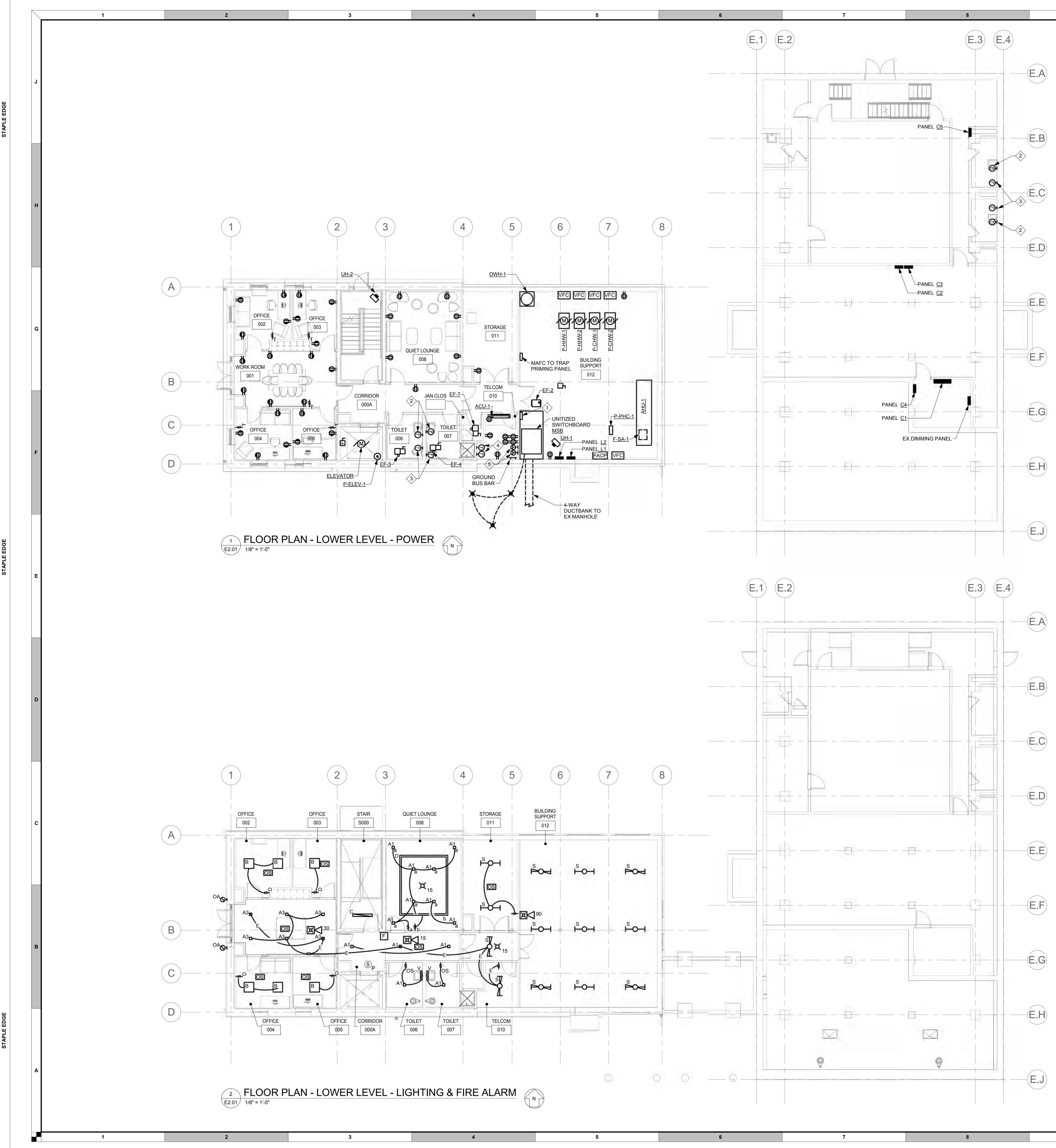
AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

STRUCTURAL ENGINEER MORABITO CONSULTANTS SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com

952 RIDGEBROOK ROAD, SUITE 1700


M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

DRAWING NOTES:

9

9

A FOR SYMBOLS, ABBREVIATIONS, AND DRAWING CONVENTIONS, REFER TO DRAWING E0.01.

11

SPECIAL NOTES:

1 MAKE ALL FINAL CONNECTIONS TO CONTROL PANEL FOR ELEVATOR SUMP PUMP, P-ELEV-1. COORDINATE CONNECTION REQUIREMENTS TO PUMP WITH MANUFACTURER.

2 MAKE ALL FINAL CONNECTIONS TO AUTOMATIC FAUCETS.

10

- 3 MAKE ALL FINAL CONNECTIONS TO AUTOMATIC TOILETS.
- 4 MAKE ALL FINAL CONNECTIONS TO SECURITY HEAD-END EQUIPMENT.
- 5 PROVIDE NEMA L5-30R.

© COPYRIGHT AYERS SAINT GROSS, 2017

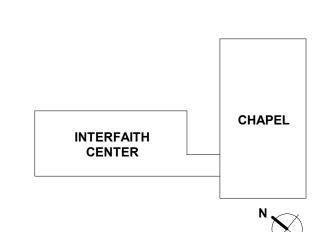
11

10

DRAWING NUMBER

DRAWING NAME FLOOR PLANS - LOWER LEVEL - ELECTRICAL

DOCUMENTS


PROJECT DESIGN PHASE

50% CONSTRUCTION

DRAWING INFORMATION **ISSUE DATE:** 04/26/17 SCALE: 1/8" = 1'-0' JOB NO.: 21641.00 DRAWN BY: Author

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

TOWSON, MD 21204

COMMISSIONING KIBART 901 DULANEY VALLEY ROAD, SUITE 301

www.spexsys.com

HANOVER, MD 21076 410.712.0390

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

410.347.8500 www.asg-architects.com IT / AV / SECURITY

BALTIMORE, MD 21230

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

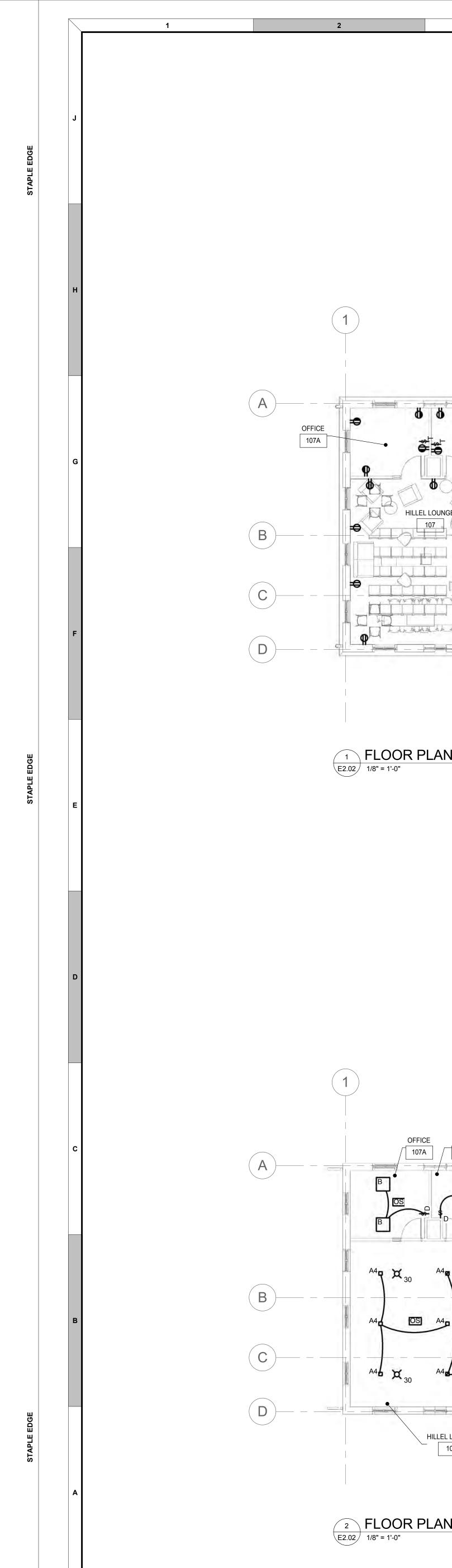
LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

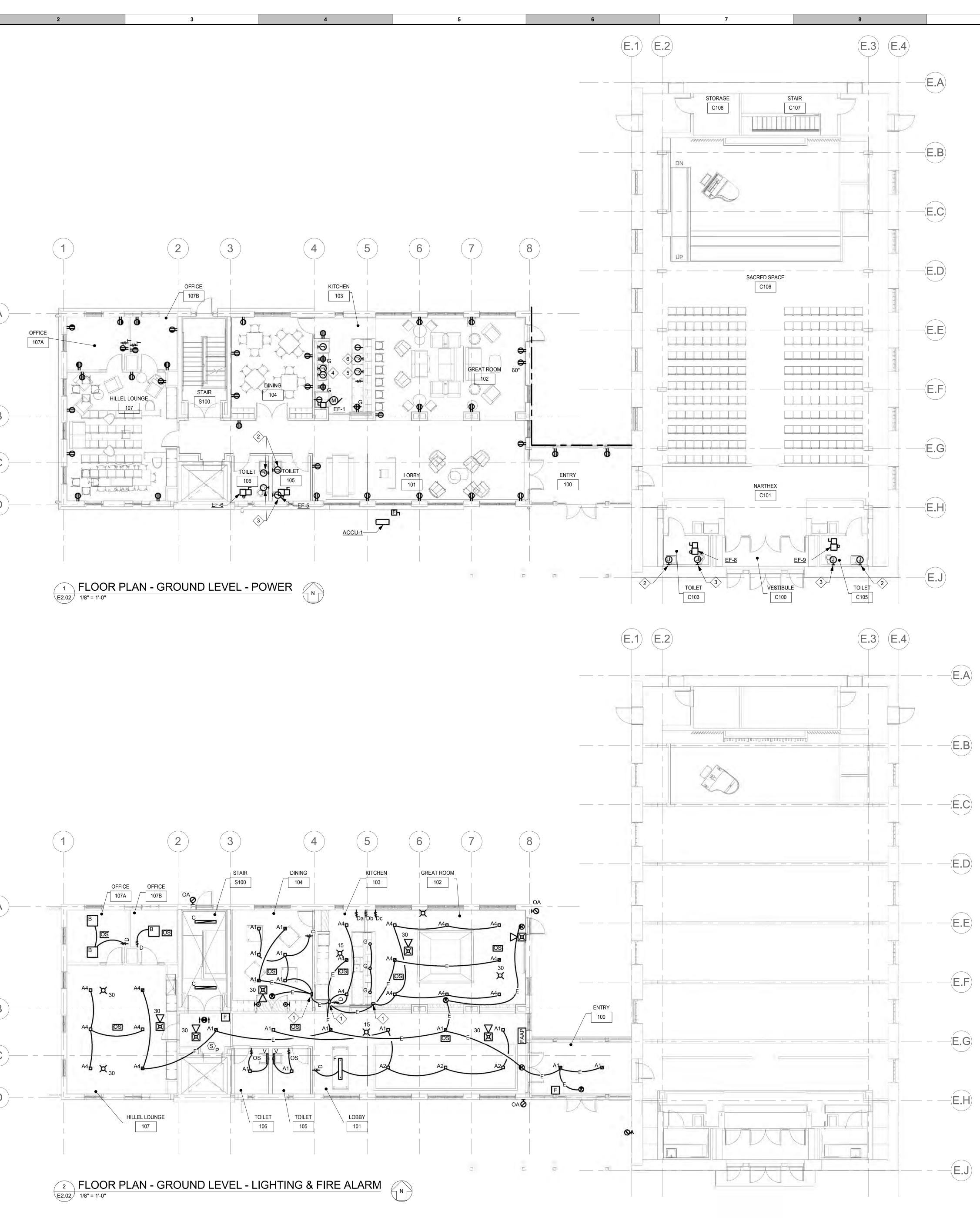
1306 CONCOURSE DRIVE, SUITE 100

952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com


410.347.8500 www.asg-architects.com

ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230


PROJECT TEAM

GOUCHER —college—

OFFICE 107B 0-4 4 - A - Aê STAIR 104 Ð HILLEL LOUNGE S100 - Y - - + 上上大地地址大大 106 A LAR BARALA Ц, S of EF-6

3

4

5

6

7

DRAWING NOTES:

9

9

A FOR SYMBOLS, ABBREVIATIONS, AND DRAWING CONVENTIONS, REFER TO DRAWING E0.01.

11

SPECIAL NOTES:

1 EMERGENCY LIGHTING RELAY.

2 MAKE ALL FINAL CONNECTIONS TO AUTOMATIC FAUCETS.

10

3 MAKE ALL FINAL CONNECTIONS TO AUTOMATIC TOILETS.

4 MAKE ALL FINAL CONNECTIONS TO RANGE AND RANGE HOOD.

5 MAKE ALL FINAL CONNECTIONS TO DISPOSAL. COORDINATE LOCATION OF TOGGLE SWITCH WITH ARCHITECT.

6 MAKE ALL FINAL CONNECTIONS TO DISHWASHER.

© COPYRIGHT AYERS SAINT GROSS, 2017

11

10

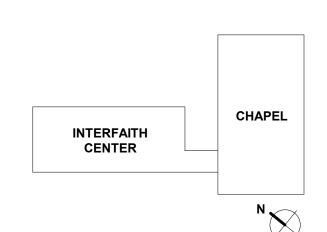
DRAWING NUMBER

FLOOR PLANS - GROUND LEVEL - ELECTRICAL

DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE

50% CONSTRUCTION


ISSUE DATE: 04/26/17 SCALE: 1/8" = 1'-0' JOB NO.: 21641.00 DRAWN BY: Author

NOT FOR CONSTRUCTION

DRAWING INFORMATION

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

	REVISIONS	
REV. #	DESCRIPTION	DATE
<u> </u>		

KIBART 901 DULANEY VALLEY ROAD, SUITE 301 TOWSON, MD 21204 410.494.1111 www.kibart.com CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com COMMISSIONING

www.asg-architects.com IT / AV / SECURITY

410.347.8500

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

www.morabitoconsultants.com CIVIL ENGINEER WBCM BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

STRUCTURAL ENGINEER MORABITO CONSULTANTS SPARKS, MD 21152 410.467.2377

300 EAST JOPPA ROAD, SUITE 200

952 RIDGEBROOK ROAD, SUITE 1700

410.347.8500 www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090


410.646.4500

www.muellerassoc.com

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

PROJECT INFORMATION GOUCHER —college—

DRAWING	NOTES

A FOR SYMBOLS, ABBREVIATIONS, AND DRAWING CONVENTIONS, REFER TO DRAWING E0.01.

11

10

10

11

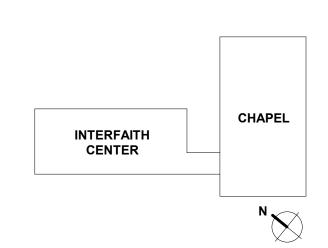
© COPYRIGHT AYERS SAINT GROSS, 2017

DRAWING NUMBER

FLOOR PLANS - LEVEL 2 -ELECTRICAL

DOCUMENTS DRAWING NAME

PROJECT DESIGN PHASE


50% CONSTRUCTION

DRAWN BY: Author

DRAWING INFORMATION ISSUE DATE: 04/26/17 1/8" = 1'-0' SCALE: JOB NO.: 21641.00

NOT FOR CONSTRUCTION

	REVISIONS	
REV. #	DESCRIPTION	DATE
	KEY PLAN	

	REVISIONS	
REV. #	DESCRIPTION	DATE

COMMISSIONING KIBART TOWSON, MD 21204 410.494.1111 www.kibart.com

CODE CONSULTANT

KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 200 COLUMBIA, MD 21045 410.750.2246 www.koffel.com

901 DULANEY VALLEY ROAD, SUITE 301

410.712.0390 www.spexsys.com

HANOVER, MD 21076

7257 PARKWAY DRIVE, SUITE 260

SPEXSYS

www.asg-architects.com IT / AV / SECURITY

BALTIMORE, MD 21230 410.347.8500

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

LANDSCAPE ARCHITECT

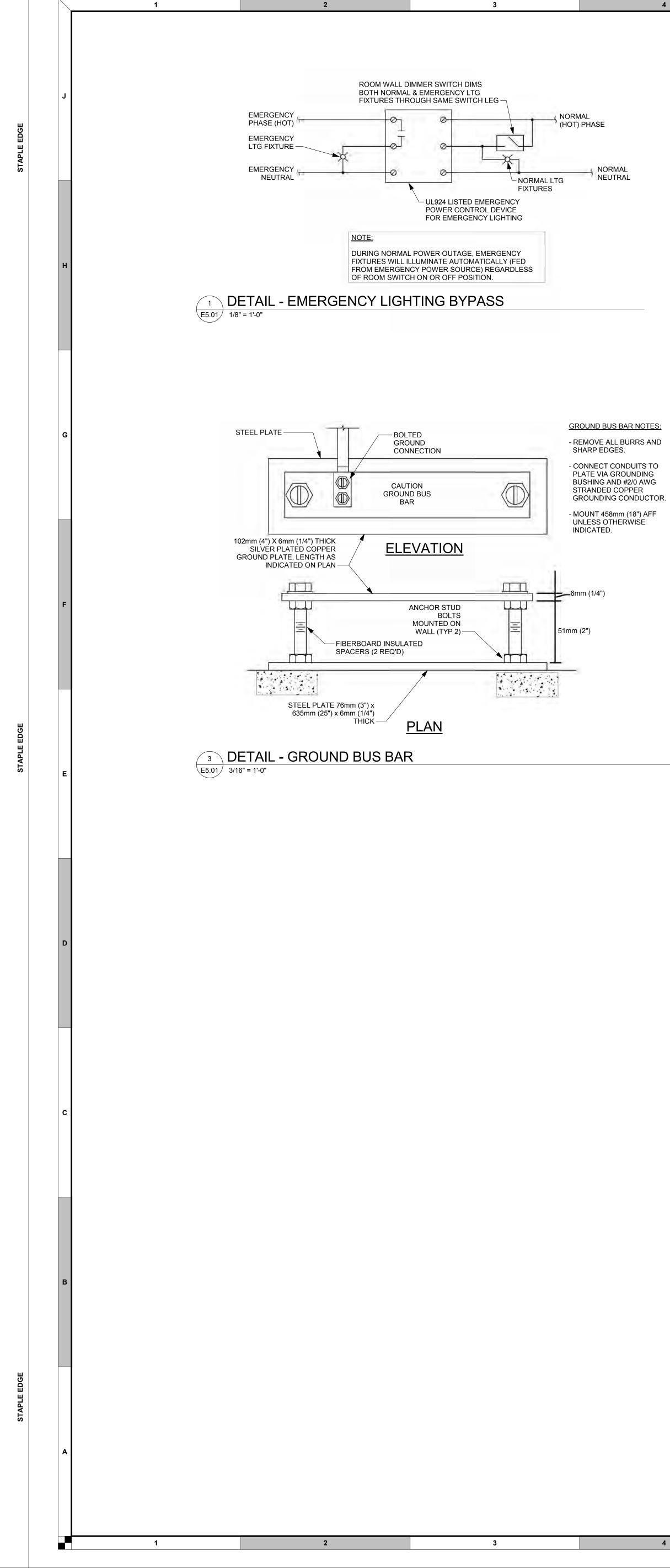
CIVIL ENGINEER WBCM BALTIMORE, MD 21286

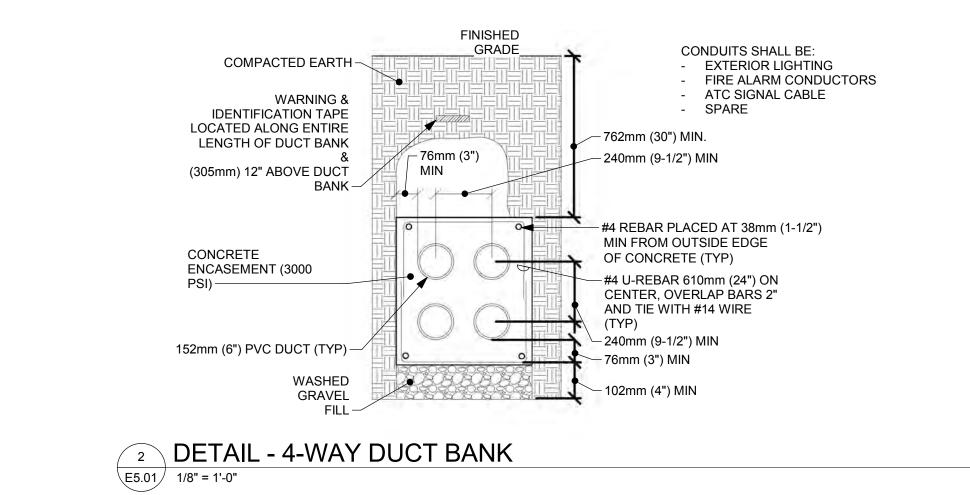
SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

300 EAST JOPPA ROAD, SUITE 200

410.512.4500 www.wbcm.com

STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700


410.646.4500


www.muellerassoc.com

www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

GOUCHER —college—

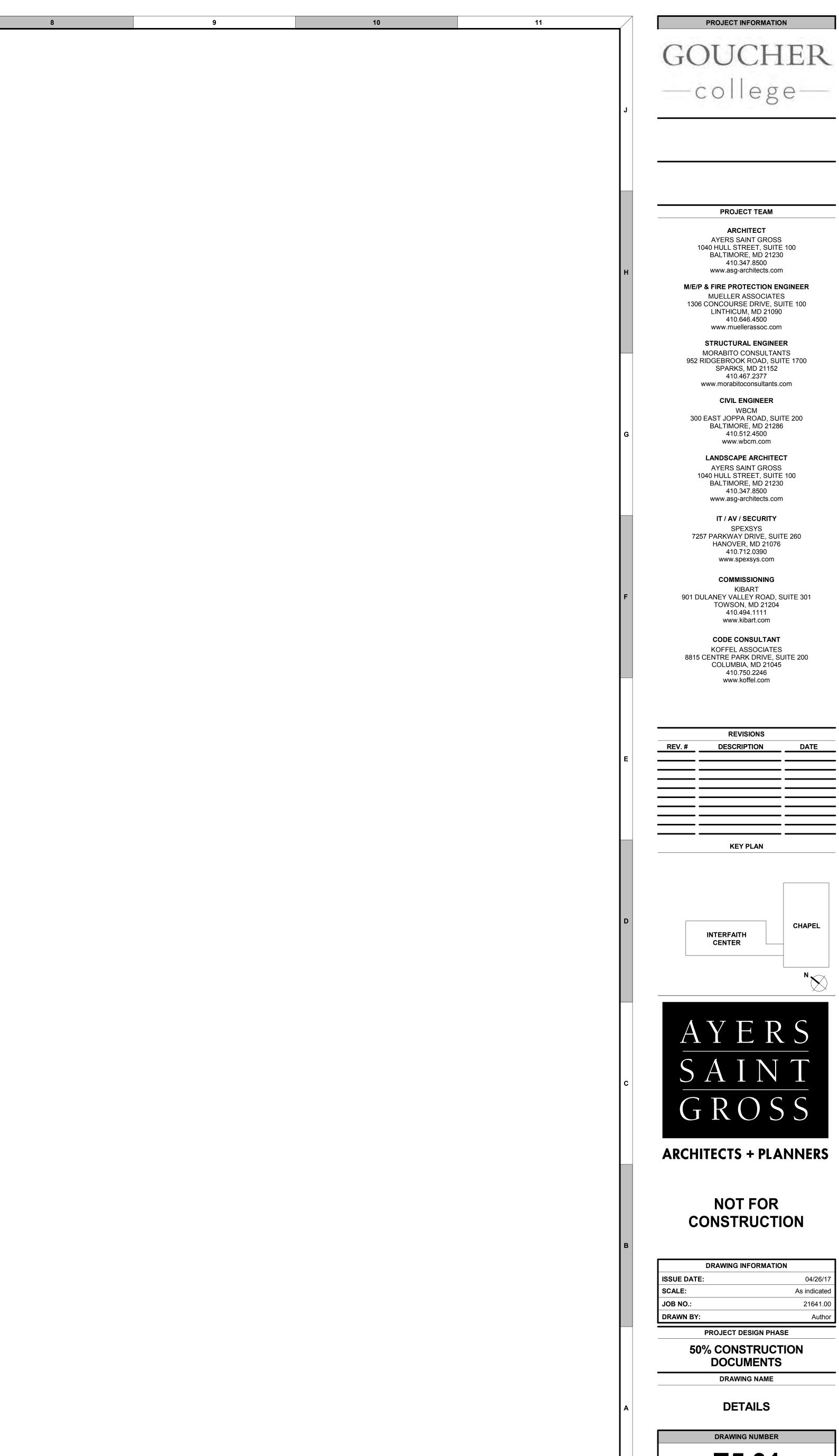
7

5

4

30" MIN EXOTHERMIC WELD — DIRECT BURIED BARE #4/0 AWG COPPER GROUNDING COUNTERPOISE -CONDUCTOR EXOTHERMI C WELD - CONNECT CABLE TO GROUND ROD BY A EXOTHERMIC WELD 3/4" x 10'-0" LONG COPPER CLAD, SINGLE-PIECE, STEEL GROUND ROD 4 DETAIL - GROUND BAR

FINISHED GRADE


7

6

E5.01 1/8" = 1'-0"

5

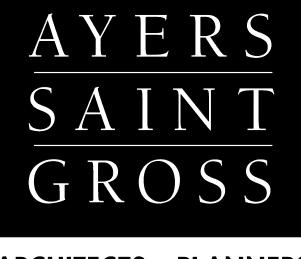
4

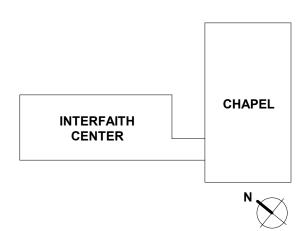
9

11

10

DRAWING NUMBER


DETAILS


DRAWING INFORMATION ISSUE DATE: 04/26/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: Author PROJECT DESIGN PHASE **50% CONSTRUCTION** DOCUMENTS DRAWING NAME

NOT FOR CONSTRUCTION

	REVISIONS							
REV. #	DESCRIPTION	DATE						

TOWSON, MD 21204 410.494.1111

COMMISSIONING KIBART

HANOVER, MD 21076 410.712.0390 www.spexsys.com 901 DULANEY VALLEY ROAD, SUITE 301

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

PROJECT INFORMATION

M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

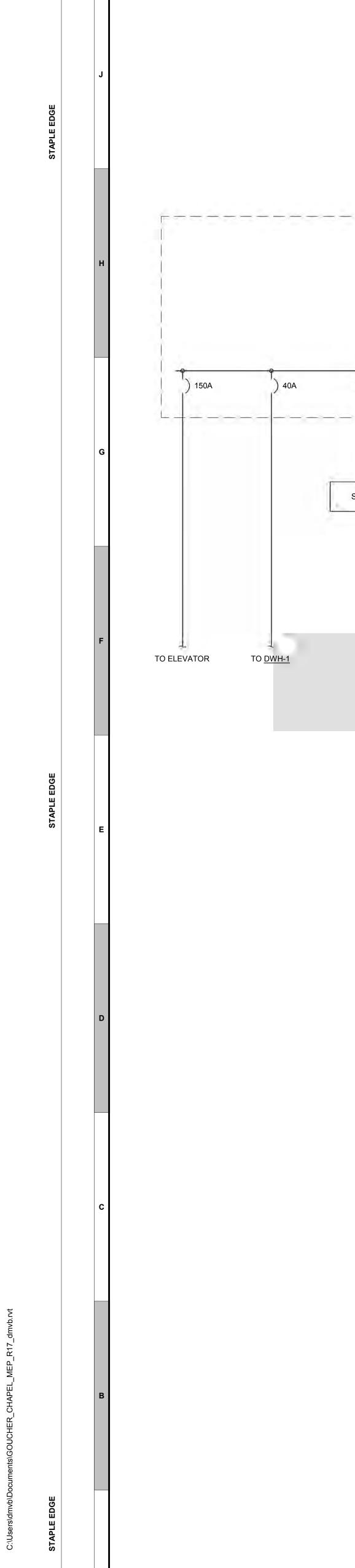
MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

410.467.2377 www.morabitoconsultants.com CIVIL ENGINEER WBCM

BALTIMORE, MD 21286 410.512.4500

300 EAST JOPPA ROAD, SUITE 200


www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

www.kibart.com	
CODE CONSULTANT KOFFEL ASSOCIATES 8815 CENTRE PARK DRIVE, SUITE 20 COLUMBIA, MD 21045 410.750.2246 www.koffel.com	0
REVISIONS	

	REVISIONS	
REV. #	DESCRIPTION	DATE

KEY PLAN

ARCHITECTS + PLANNERS

1

2

) 30A

— 3#10, #

10GND,

IN 3/4"C

1000A

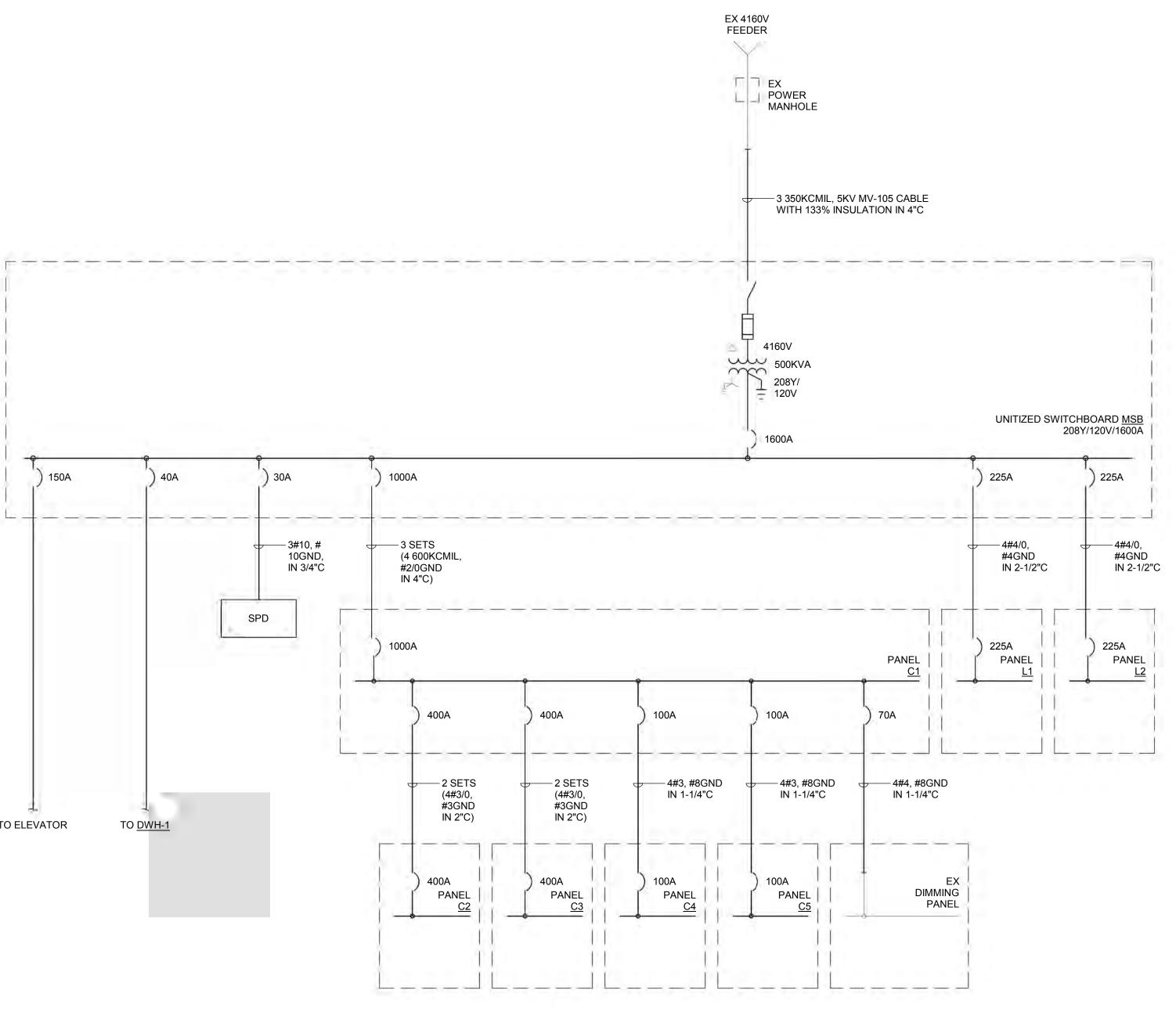
— 3 SETS (4 600KCMIL,

#2/0GND

IN 4"C)

3

-SPD 1000A 400A 400A 100A ____ ____ ____ ____ — 2 SETS — 2 SETS — 4#3, #8GND IN 1-1/4"C (4#3/0, (4#3/0, #3GND #3GND IN 2"C) IN 2"C)) 400A) 400A PANEL _______ 11 11 11 11 1 SINGLE LINE DIAGRAM E6.01 NOT TO SCALE


4

5

6

3

2

5

4

6

7

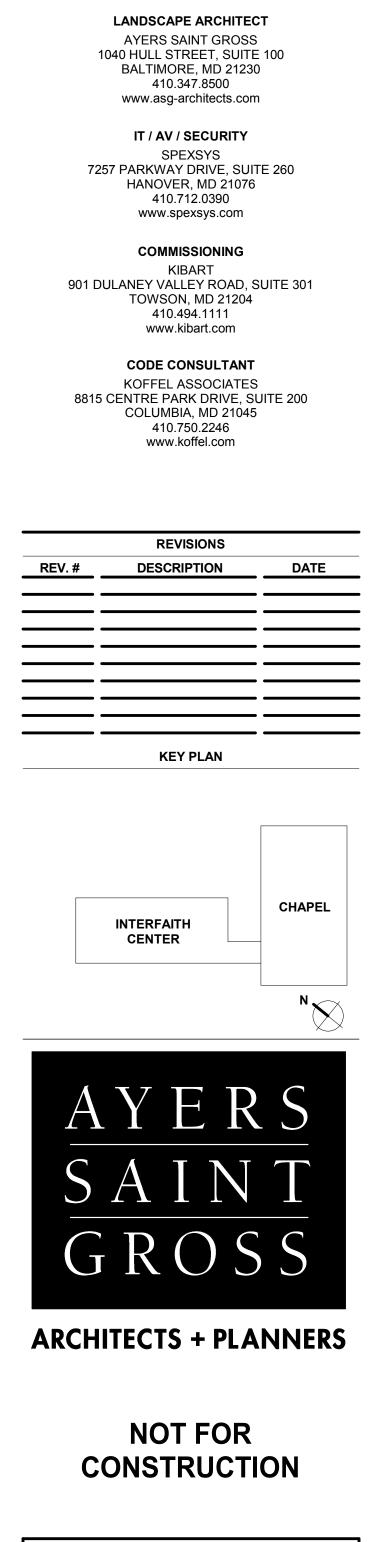
8

	LIGHTING FIXTURE SCHEDULE										
FIXTURE TYPE	MOUNTING	MANUFACTUR ER(S)	CATALOG OR MODEL NUMBER	LAMPS (NOTE 1)	VOLTS	REMARKS					
A1	CEILING RECESSED	PORTFOLIO	LDSQ6B10D010TR DRIVER: EU6B10209030 TRIM: 6LBSQ0LI	LED 1000 LUMEN 3000 DEG		6" SQUARE LED DOWNLIGHT WITH WHITE TRIM, SPECULAR CLEAR REFLECTOR, AND 0-10VDC DIMMING DRIVER.					
A2	CEILING RECESSED	PORTFOLIO	LDSQ6B15D010TR DRIVER: EU6B10209030 TRIM: 6LBSQ0LI	LED 1500 LUMEN 3000 DEG		6" SQUARE LED DOWNLIGHT WITH WHITE TRIM, SPECULAR CLEAR REFLECTOR, AND 0-10VDC DIMMING DRIVER.					
A3	CEILING RECESSED	PORTFOLIO	LDSQ6B20D010TR DRIVER: EU6B10209030 TRIM: 6LBSQ0LI	LED 2000 LUMEN 3000 DEG		6" SQUARE LED DOWNLIGHT WITH WHITE TRIM, SPECULAR CLEAR REFLECTOR, AND 0-10VDC DIMMING DRIVER.					
A4	CEILING RECESSED	PORTFOLIO	LDSQ6B30D010TR DRIVER: EU6B30509030 TRIM: 6LBSQ0LI	LED 3000 LUMEN 3000 DEG		6" SQUARE LED DOWNLIGHT WITH WHITE TRIM, SPECULAR CLEAR REFLECTOR, AND 0-10VDC DIMMING DRIVER.					
В	CEILING RECESSED	PHILLIPS DAY-BRITE	2CAG38L830-2-DS-UNV-DIM	LED 3800 LUMEN 3000 DEG	120	2' x 2' RECESSED LED TROFFER WITH 0-10VDC DIMMING DRIVER.					
С	CEILING/WALL SURFACE	PHILLIPS DAY-BRITE	SF4C29A35UDZT-US	LED 2900 LUMEN 3000 DEG		SURFACE LED STAIRWELL FIXTURE WITH WHITE HOUSING, ACRYLIC LENS, AND INTEGRAL ULTRASONIC OCCUPANCY SENSOR. CEILING OR WALL MOUNT AS INDICATED. WHERE WALL MOUNTED, MOUNT 96"AFF. SET FIXTURE TO REDUCE LIGHTING TO 20% OUTPUT WHEN AREA IS UNOCCUPIED.					
D	CEILING PENDANT	VERGE	VG-2WDC-XX-30 DRIVER: PSC-100W-ELV-24VDC	LED 2.5W/LF 3000 DEG		LED COVE STRIP WITH 0-10VDC DIMMING DRIVER. REFER TO ARCHITECTURAL PLANS FOR MOUNTING DETAILS. VERIFY DIMMER TYPE WITH MANUFACTURER.					
F	CEILING PENDANT	CORELIGHT	I2-WS-1L30-1D-UNV-AC48-ST-4-ST D-SV-W-EB	LED 3000 LUMEN 3000 DEG 3000 DEG	120	4' LED PENDANT WITH 0-10VDC DIMMING DRIVER.					
G	CEILING PENDANT	FEISS	P1391ORB	LED 950 LUMEN 2700 DEG	120	12" LED GLOBE PENDANT.					
OA	WALL SURFACE	BEGA	2383 LED BRZ K4	LED 4000 DEG	120	EXTERIOR WALL SCONCE WITH INTEGRAL PHOTOCELL.					
S	CEILING SURFACE	METALUX	4SNLED-LD4-41SL-LN-UNV-L830- CD1-U	LED 4200 LUMEN 3000 DEG	120	4' LED INDUSTRIAL STRIP.					
V	WALL SURFACE	RICH BRILLIANT WILLING	BRE-SM-3-30	LED 2160 LUMEN 3000 DEG		2' WALL SCONCE WITH GOLD FINISH AND 0-10VDC DIMMING DRIVER. MOUNT HORIZONTALLY OVER MIRRORS IN TOILETS. MOUNT VERTICALLY IN PRAYER ROOMS 60"AFF.					

EQUIPMENT CIRCUIT SCHEDULE															
			LOAD				SCONNECT		CONT	ROLLER			CIRCUIT		
SERVES	HP	kVA	AMPS	VOLTS	PH	DEVICE	SIZE	DISCO	NNECT	ТҮРЕ	NEMA	WIRE	GND	C"	REMARKS
		KVA	AIVIP 5			DEVICE	SIZE	DEVICE	SIZE		SIZE	WIKE	GND		
ACCU-1		2.5	12.0	208	1	FS	30	-	-	-	-	2#12	#12	3/4	
ACU-1		0.2	1.0	208	1	-	-	-	-	-	-	2#12	#12	3/4	
AHU-1		0.0	0.0	120	1	-	-	-	-	-	-				HIDE
CUH-1		0.3	2.5	120	1	-	-	-	-	-	-	2#12	#12	3/4	
CUH-2		0.3	2.5	120	1	-	-	-	-	-	-	2#12	#12	3/4	
DWH-1		9.0	25.0	208	3	-	-	-	-	-	-	3#8	#10	3/4	
EF-1		0.1	1.2	120	1	NFS	30A	-	-	-	-	2#12	#12	3/4	
EF-2	1/2	0.0	0.0	120	1	NFS	30A	-	-	-	-	2#12	#12	3/4	
EF-3		0.1	1.1	120	1	NFS	30A	-	-	-	-	2#12	#12	3/4	
EF-4		0.1	1.1	120	1	NFS	30A	-	-	-	-	2#12	#12	3/4	
EF-5		0.1	1.1	120	1	NFS	30A	-	-	-	-	2#12	#12	3/4	
EF-6		0.1	1.1	120	1	NFS	30A	-	-	-	-	2#12	#12	3/4	
EF-7		0.1	0.7	120	1	NFS	30A	-	-	-	-	2#12	#12	3/4	
EF-8		0.1	0.7	120	1	NFS	30A	-	-	-	-	2#12	#12	3/4	
EF-9		0.1	0.7	120	1	NFS	30A	-	-	-	-	2#12	#12	3/4	
ELEVATOR	30	33.1	91.9	208	3	FS	200	-	-	-	-	3#2	#6	1-1/2	
F-SA-1	3	4.0	11.0	208	3	-	-	MCP	15	VFC	-	3#12	#12	3/4	
FCU-4HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-4HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-4HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-4HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-6HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-6HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-6HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-6HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-6HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-6HC-C	1/12	0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-6VC	1/5	0.1	0.6	208	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-6VC	1/5	0.1	0.6	208	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-6VC	1/5	0.1	0.6	208	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-8HC-C	1/6	0.3	2.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-8VC	1/5	0.3	1.4	208	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-8VC	1/5	0.3	1.4	208	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-8VC	1/5	0.3	1.4	208	1	-	-	-	-	-	-	2#12	#12	3/4	
FCU-8VC	1/5	0.3	1.4	208	1	-	-	-	-	-	-	2#12	#12	3/4	
P-CHW-1	5	6.3	17.6	208	3	-	-	MCP	30	VFC	-	3#10	#10	3/4	
P-CHW-2	5	6.3	17.6	208	3	-	-	MCP	30	VFC	-	3#10	#10	3/4	
P-ELEV-1	0.5	1.1	9.4	120	1	-	-	-	-	-	-	2#12	#12	3/4	PROVIDED WITH CONTROL PANEL
P-HHW-1	1-1/2	2.2	6.0	208	3	-	-	MCP	15	VFC	-	3#12	#12	3/4	
P-HHW-2	1-1/2	2.2	6.0	208	3	-	-	MCP	15	VFC	-	3#12	#12	3/4	
P-PHC-1		0.6	4.8	120	1	NFS	30	-	-	-	-	2#12	#12	3/4	
UH-1		0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	
UH-2		0.2	1.3	120	1	-	-	-	-	-	-	2#12	#12	3/4	

9

7


DRAWING NOTES:

9

A FOR SYMBOLS, ABBREVIATIONS, AND DRAWING CONVENTIONS, REFER TO DRAWING E0.01.

11

10

PROJECT INFORMATION

GOUCHER —college—

PROJECT TEAM

ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

M/E/P & FIRE PROTECTION ENGINEER

MUELLER ASSOCIATES

1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

410.646.4500

www.muellerassoc.com

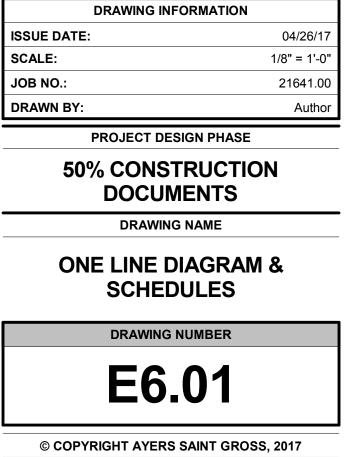
STRUCTURAL ENGINEER

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152

410.467.2377

www.morabitoconsultants.com


CIVIL ENGINEER

WBCM 300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286

410.512.4500

www.wbcm.com

11

10

		1 2 3 GENERAL NOTES
L	1.	THESE TELECOMMUNICATIONS DRAWINGS ARE PREPARED AND COORDINATED WITH THE SCOPE OF WORK DO SPECIFICATIONS. TOGETHER THESE DOCUMENTS FORM THE CONTRACT DOCUMENTS.
	2. 3.	THE TELECOMMUNICATIONS SYSTEMS ARE DESIGNED IN ACCORDANCE WITH THE BICSI AND TIA/EIA STANDAR ALL CABLE PATHWAYS ARE DESIGNED WITH A MAXIMUM 40 PERCENT FILL RATIO UNLESS OTHERWISE NOTED. MAY ALTER FROM INITIAL DESIGN DUE TO CLIENT REQUIREMENTS DURING INSTALLATION.
	4.	ALL CABLE PATHWAYS SHALL BE FREE FROM PROJECTIONS AND ROUGH OR SHARP EDGES THROUGHOUT THI POINTS OR EDGES THAT CABLING MUST PASS, AND MAY BE SUBJECT TO INJURY OR WEAR, SHALL BE ROUNDE BUSHED.
	5.	THE TELECOMMUNICATIONS DRAWINGS INDICATE THE GENERAL LOCATION OF EQUIPMENT, CABLE PATHWAYS ALTHOUGH THE DRAWINGS DO NOT NECESSARILY DICTATE THE ACTUAL ROUTES OF CABLE TRAYS AND COND EQUIPMENT AND OUTLETS, AND OTHER SUPPORTING ITEMS, THEY SHALL BE FOLLOWED AS CLOSELY AS POSS IN THIS DOCUMENT. IT SHALL BE THE INSTALLING CONTRACTOR'S RESPONSIBILITY TO COORDINATE THE INSTA TELECOMMUNICATION ITEMS WITH ALL OTHER CONTRACTORS.
	6. 7.	ALL BLOCKS, PANELS AND CABLE SHALL BE ASSIGNED, LABELED AND RECORDED BY THE INSTALLING CABLE ON DELIVERED TO THE ENGINEER. SEE NOTES ON INDIVIDUAL DRAWINGS FOR CROSS REFERENCE TO PERTINENT DETAILS, SECTIONS, ETC. SHO
н	8.	DRAWINGS IN THIS DRAWING SET. SCALES NOTED ON THE TELECOMMUNICATIONS DRAWINGS ARE FOR GENERAL INFORMATION AND USED FOR
	9. 10.	ALL MOUNTING HEIGHTS SHOWN ARE MEASURED FROM FINISHED FLOOR TO BOTTOM OF MOUNTED EQUIPMEI NOTED. FIRE STOP ALL STRUCTURE PENETRATIONS WITH FIRE STOPPING MATERIAL EQUAL TO OR GREATER THAN TH
	11.	STRUCTURE. INSTALL FIRE STOPPING MATERIAL AFTER COMPLETE INSTALLATION OF CABLING. USE ONLY LIST MATERIAL IN ACCORDANCE WITH UL, NFPA, AND OTHER AUTHORITIES HAVING JURISDICTION. TELECOMMUNICATIONS ROOMS SHALL NOT BE USED AS STORAGE SPACE BY ANY CONTRACTOR EXCLUDING T CONTRACTOR FOR THE TELECOMMUNICATIONS SYSTEM. WHEN THE INSTALLATION OF A TELECOMMUNICATIO COMPLETE, ALL ITEMS AND EQUIPMENT NOT SUPPORTING THE FUNCTIONS OF THAT SPACE SHALL BE REMOVE
	12. 13.	ALL TELECOMMUNICATIONS ROOMS WILL HAVE 3/4" x 4' x 8' FIRE RETARDANT PLYWOOD INSTALLED VERTICALL APPROXIMATELY 2' ABOVE THE FLOOR. THE TELECOMMUNICATIONS DRAWINGS INDICATE THE GENERAL LOCATION OF THE BACKBONE CONDUIT FOR
G		THE INSTALLER SHALL VERIFY THE EXACT LOCATION OF THE CONDUIT(S). CONDUITS SHALL BE POSITIONED SE EXIT TELECOM ROOMS IN THE CORNERS AS SHOWN ON THE TELECOM ROOM DRAWINGS.
	14. 15.	NOT ALL HARDWARE FOR INSTALLATION IS IDENTIFIED/SHOWN. THE TELECOMMUNICATIONS CONTRACTOR IS MOUNTING HARDWARE REQUIRED FOR A COMPLETE AND PROPERLY OPERATING INSTALLATION. NOT ALL ITEMS, COMPONENTS AND SYSTEMS SPECIFIED IN THIS DRAWING SET OR THE SPECIFICATIONS ARE I CONTRACTOR TO PROVIDE MANUFACTURERS' SPECIFICATIONS AND DETAIL SHEETS IN THE PRECONSTRUCTION SELECTION PER THE SPECIFICATIONS.
	16.	THE TELECOMMUNICATIONS CONTRACTOR SHALL INSTALL COMPONENTS OR SYSTEMS PER THE MANUFACTUR INSTRUCTIONS OR SPECIFICATIONS.
	17. 18.	ALL CABLE SHALL COMPLY WITH THE SPECIFICATIONS AND SHALL BE SUITABLE AND LISTED FOR THE ENVIRON INSTALLED. ALL CONDUIT RUNS SHALL FOLLOW BICSI STANDARDS FOR BENDS, FILL AND JUNCTION BOX PLACEMENT. NO (
	19.	HAVE GREATER THAN 180 DEGREES OF BEND WITHOUT A PROPERLY SIZED AND PLACED PULL BOX. ALL CONDUIT RUNS AND CABLE TRAY SHOWN ARE DIAGRAMMATICAL. REPORT ANY MAJOR DEVIATION TO CON
-	20. 21.	FOR APPROVAL. ALL CONDUITS FROM BELOW SHALL STUB UP 4" A.F.F. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING FINAL SYSTEMS, EQUIPMENT LAYOUT AND CONDU
	22.	ON DRAWING WITH SITE CONDITIONS. CONTRACTOR SHALL ENSURE PROPER SEPARATION OF CLASS 1, CLASS 2, AND CLASS 3 CIRCUITS PER NEC 72
	23. 24.	CONTRACTOR SHALL VERIFY THE SIZE OF ALL CONDUCTORS, CONDUIT, AND JUNCTION BOXES (40 % MAXIMUN SHALL BE IN ACCORDANCE WITH NATIONAL ELECTRICAL CODE (NEC) AND ALL LOCAL CODES HAVING JURISDIC LOW VOLTAGE VOICE AND DATA CABLING SHALL NOT BE INSTALLED IN THE SAME CONDUIT AS 120 VAC POWEI
	25.	CONTRACTOR SHALL PROMPTLY NOTIFY OWNER OR OWNER'S REPRESENTATIVE PRIOR TO INSTALLATION OF MOUNTING LOCATIONS NOTED ON THE DRAWINGS ARE OBSTRUCTED AND/OR IF ANY CONFLICTS OR PROBLEM
	26.	CONTRACTOR SHALL PROVIDE AND INSTALL EQUIPMENT AND HARDWARE IN ORDER TO MEET THE INTENT OF PROVIDE OWNER WITH A COMPLETE AND FULLY OPERATIONAL CABLING SYSTEM AS SPECIFIED. QUESTIONS F INTENT OF THE DESIGN SHALL BE PROMPTLY BROUGHT TO THE ATTENTION OF THE ENGINEER.
	27.	ANY DEVICE SHOWN ON THESE DRAWINGS THAT IS LOCATED IN AN OPEN OR HARD CEILING SPACE SHALL HAV WITH A CONDUIT TO THE NEAREST ACCESSIBLE CEILING UNLESS OTHERWISE NOTED.
c		
L		
A		
┛		

2

4

4	5 6 7
	APPLICABLE CODES AND STANDARDS
	ALL MATERIALS AND WORK SPECIFIED HEREIN SHALL COMPLY WITH THE APPLICABLE REQUIREMENTS OF:
DOCUMENT AND THE	1. TIA-526-7 (OFSTP-7)-2002+A1:2008, MEASUREMENT OF OPTICAL FIBER LOSS OF INSTALLED SINGLE-MODE FIB PLANT.
ARDS. ED. FILL REQUIREMENTS	 TIA-526-14-B-2010 (OFSTP-14), OPTICAL POWER LOSS MEASUREMENTS OF MULTIMODE FIBER CABLE PLANT. ANSI/TIA-568-C.0-2009+A1:2010+A2:2012, GENERIC TELECOMMUNICATIONS FOR CUSTOMER PREMISE.
THE ENTIRE PATH. ALL IDED, PADDED, OR	 ANSI/TIA-568-C.1-2009+A1:2012, COMMERCIAL BUILDING TELECOMMUNICATIONS CABLING STANDARD. ANSI/TIA-568-C.2-2009+A1:2010, BALANCED TWISTED PAIR CABLING COMPONENTS STANDARD. ANSI/TIA-568-C.3-2009+A1:2011, OPTICAL FIBER CABLING COMPONENTS STANDARDS.
AYS, AND OUTLETS.	 ANSI/TIA-568-C.4-2011, BROADBAND COAXIAL CABLING COMPONENTS STANDARD. 8. ANSI/TIA-569-C-2012, TELECOMMUNICATIONS PATHWAYS AND SPACES.
ONDUITS, LOCATION OF OSSIBLE TO THE DESIGN STALLATION OF ALL	 ANSI/TIA-505-C-2012, TELECOMMUNICATIONS FATTWATS AND STACES. ANSI/TIA-606-B-2012, ADMINISTRATION STANDARD FOR COMMERCIAL TELECOMMUNICATIONS INFRASTRUCTU 10. ANSI/TIA-607-B-2011, GENERIC TELECOMMUNICATIONS BONDING AND GROUNDING (EARTHING) FOR CUSTOM PREMISES.
E CONTRACTOR, AND	 11. ANSI/TIA-758-B-2012, CUSTOMER-OWNER OUTSIDE PLANT TELECOMMUNICATIONS INFRASTRUCTURE STAND/ 12. ANSI/TIA-862-A, BUILDING AUTOMATION SYSTEMS CABLING STANDARD.
HOWN ON OTHER	 ANSI/TIA-802-A, BUILDING AUTOMATION STSTEMS CABLING STANDARD. ANSI/TIA-942-A, TELECOMMUNICATIONS INFRASTRUCTURE STANDARDS FOR DATA CENTERS. ANSI/TIA-1005, TELECOMMUNICATIONS INFRASTRUCTURE FOR INDUSTRIAL PREMISES.
OR REFERENCE ONLY. MENT UNLESS OTHERWISE	 14. ANSI/TIA-1005, TELECOMMONICATIONS INFRASTRUCTORE FOR INDUSTRIAL FREMISES. 15. ANSI/TIA-1179, HEALTHCARE FACILITY TELECOMMUNICATIONS INFRASTRUCTURE STANDARD. 16. ISO/IEC 11801, GENERIC CABLING FOR CUSTOMER PREMISES.
THAT OF PENETRATED	 17. IEEE 802.3af, POWER OVER ETHERNET (PoE) STANDARD. 18. IEEE 802.3at, POWER OVER ETHERNET + (PLUS).
ISTED FIRE STOPPING	 10. IEEE 002.3at, FOWER OVER ETHERNET F (FE03). 19. IEEE 802.3an, PHYSICAL LAYER AND MANAGEMENT PARAMETERS FOR 10 Gbps OPERATION TYPE 10GBASE-T. 20. IEEE 802.3ba, MEDIA ACCESS CONTROL PARAMETERS, PHYSICAL LAYERS AND MANAGEMENT PARAMETERS I
IG THE INSTALLING TIONS SPACE IS OVED FROM THE SPACE.	 20. IEEE 002.30a, MEDIA ACCESS CONTROL FARAMETERS, THISICAL LATERS AND MANAGEMENT FARAMETERS I AND 100 Gbps OPERATION. 21. BUILDING INDUSTRY CONSULTING SERVICES INTERNATIONAL (BICSI) TELECOMMUNICATIONS DISTRIBUTION
ALLY, STARTING	22. NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION.
OR THE TELECOM ROOMS. O SO THEY ENTER AND	 NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) 70 - NATIONAL ELECTRICAL CODE. UNDERWRITERS LABORATORY (UL) OR EQUIVALENT.
R IS RESPONSIBLE FOR ALL	
RE DETAILED. CTION SUBMITTALS FOR	
TURERS' INSTALLATION	ABBREVIATIONS
RONMENT IN WHICH IT IS	
O CONDUIT RUNS SHALL	AFF ABOVE FINISHED FLOOR
ONSTRUCTION MANAGER	ANSI AMERICAN NATIONAL STANDARDS INSTITUTE ASME AMERICAN SOCIETY OF MECHANICAL ENGINEERS
NDUIT ROUTING AS SHOWN	ASTM AMERICAN SOCIETY FOR TESTING MATERIALS BICSI BUILDING INDUSTRY CONSULTING SERVICES INTERNATIONAL
C 725-54. 1UM FILL). INSTALLATION	EIAELECTRONICS INDUSTRY ASSOCIATIONFCCFEDERAL COMMUNICATIONS COMMISSION
DICTION. VER CABLES.	IEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS ISO INTERNATIONAL STANDARDS ORGANIZATION
OF WORK IF ANY LEMS ARE DISCOVERED.	NEC NATIONAL ELECTRICAL CODE NEMA NATIONAL ELECTRICAL MANUFACTURERS' ASSOCIATION
OF THE DESIGN AND TO IS REGARDING THE	NESC NATIONAL ELECTRICAL SAFETY CODE NFPA NATIONAL FIRE PROTECTION ASSOCIATION
HAVE A SINGLE-GANG BOX	OSHA OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION POE POWER OVER ETHERNET
	RUS RURAL UTILITY SERVICE (FORMERLY REA) SMPTE SOCIETY OF MOTION PICTURE AND TELEVISION ENGINEERS TA TELECOMMUNICATIONS INDUSTRY ASSOCIATION
	TIA TELECOMMUNICATIONS INDUSTRY ASSOCIATION UL UNDERWRITER'S LABORATORIES, INC. UON UNLESS OTHERWISE NOTED
	UON UNLESS OTHERWISE NOTED
	SHEET LIST
	T0.10 TECHNOLOGY SYSTEMS NOTES, SYMBOLS, AND ABBREVIAIONS T2.00 TECHNOLOGY SYSTEMS FLOOR PLAN - LOWER LEVEL T2.04 TECHNOLOGY SYSTEMS FLOOR PLAN - LOWER LEVEL
	T2.01TECHNOLOGY SYSTEMS FLOOR PLAN - LEVEL 1T2.02TECHNOLOGY SYSTEMS FLOOR PLAN - LEVEL 2T3.00TECHNOLOGY SYSTEMS REFLECTED CEILING PLAN - LOWER LEVEL
	T3.01 TECHNOLOGY SYSTEMS REFLECTED CEILING PLAN - LEVEL 1
	T3.02 TECHNOLOGY SYSTEMS REFLECTED CEILING PLAN - LEVEL 2 T4.00 TECHNOLOGY SYSTEMS - AV DETAILS T4.04 TECHNOLOGY SYSTEMS - OF OUD TX DETAILS
	T4.01TECHNOLOGY SYSTEMS - SECURITY DETAILST4.02TECHNOLOGY SYSTEMS - TELECOM CABLING DETAILS
	CONVENTIONS
	- DETAIL DESIGNATION NUMBER DENOTES DETAIL IDENTIFICATION
	DETAIL DESIGNATION NUMBER DENUTES DETAIL IDENTIFICATION

6

5

8		9	10	11
			LEGEND	
BER CABLE	CAB	LING:		
	▲ #	WHERE # REPRESENTS THE	OUNTED AT 18" AFF (UON). IN T	E WITH CATEGORY 6 JACKS, DEVICE LOCATION, INSTALL IN A HE TR, TERMINATE CABLES ON
TURE.	AP	WIRELESS ACCÉSS POINT. I		ITH CATEGORY 6A JACKS FOR A PE BOX WITH 20' OF CABLE COILED. ORY 6A PATCH PANELS.
MER DARD.	▲ _{SEC}			A CATEGORY 6 JACK FOR A IN THE TR, TERMINATE CABLE ON
	▲ _D	SCREEN DISPLÁY. INSTALL J	ACK IN A SINGLE-GANG FACEPI SEE AV DRAWINGS FOR DETAI	A CATEGORY 6 JACK FOR A FLAT LATE ASSOCIATED WITH THE LS). IN THE TR, TERMINATE CABLE
Г. S FOR 40 Gbps	▲ _E			IONE AND LEAVE 20' OF DM. IN TR, TERMINATE CABLE ON
N METHODS	▲ _{ET}	EMERGENCY TÉLEPHONE. I	IOUNTED AT 42" AFF (UON). IN ⁻	I A CATEGORY 6 JACK FOR AN E BOX COILED IN A TELEPHONE THE TR, TERMINATE THE CABLE ON
		INDICATES CABLES SHALL BI	E INSTALLED IN A FLOORBOX.	
		INDICATES CABLES SHALL BI	E INSTALLED IN THE CEILING	

AUDIO VISUAL:

AV I	DIGITAL TRANSMITTER - INTERFACE POINT FOR HDMI, COMPUTER AUDIO AND COMPUTER VIDEO
AV ¹²	PASSIVE CABLE CONNECTION - INTERFACE POINT FOR HDMI, COMPUTER AUDIO AND COMPUTER VIDEO
AV C	WALL-MOUNTED AV CONTROL PANEL
AV D##	DISPLAY, WHERE ## IS THE DIAGONAL SCREEN SIZE IN INCHES.
AV AL	ASSISTED LISTENING TRANSMITTER
AV SPKR1	COLUMN-ARRAY LOUDSPEAKER
S	CEILING SPEAKER

SECURITY:

_____W ____P

(♂ ◦) M B

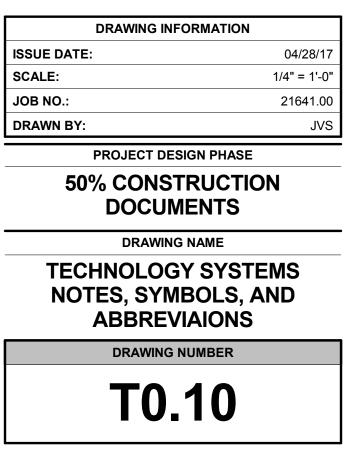
DOOR POSITION SWITCH

9

WALL-MOUNTED PROXIMITY CARD READER

CATION

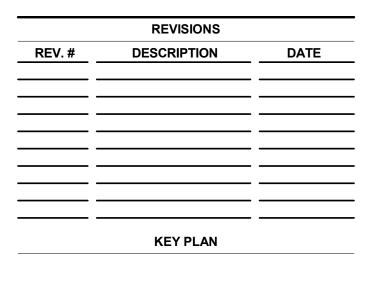
8


- INDICATES DRAWING NUMBER WHERE DETAIL IS DRAWN

7

11

10


NOT FOR CONSTRUCTION

CHAPEL INTERFAITH CENTER <u>AYERS</u>

<u>SAINT</u>

GROSS

ARCHITECTS + PLANNERS

www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

www.morabitoconsultants.com **CIVIL ENGINEER** WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT

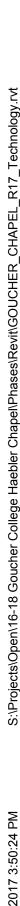
AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

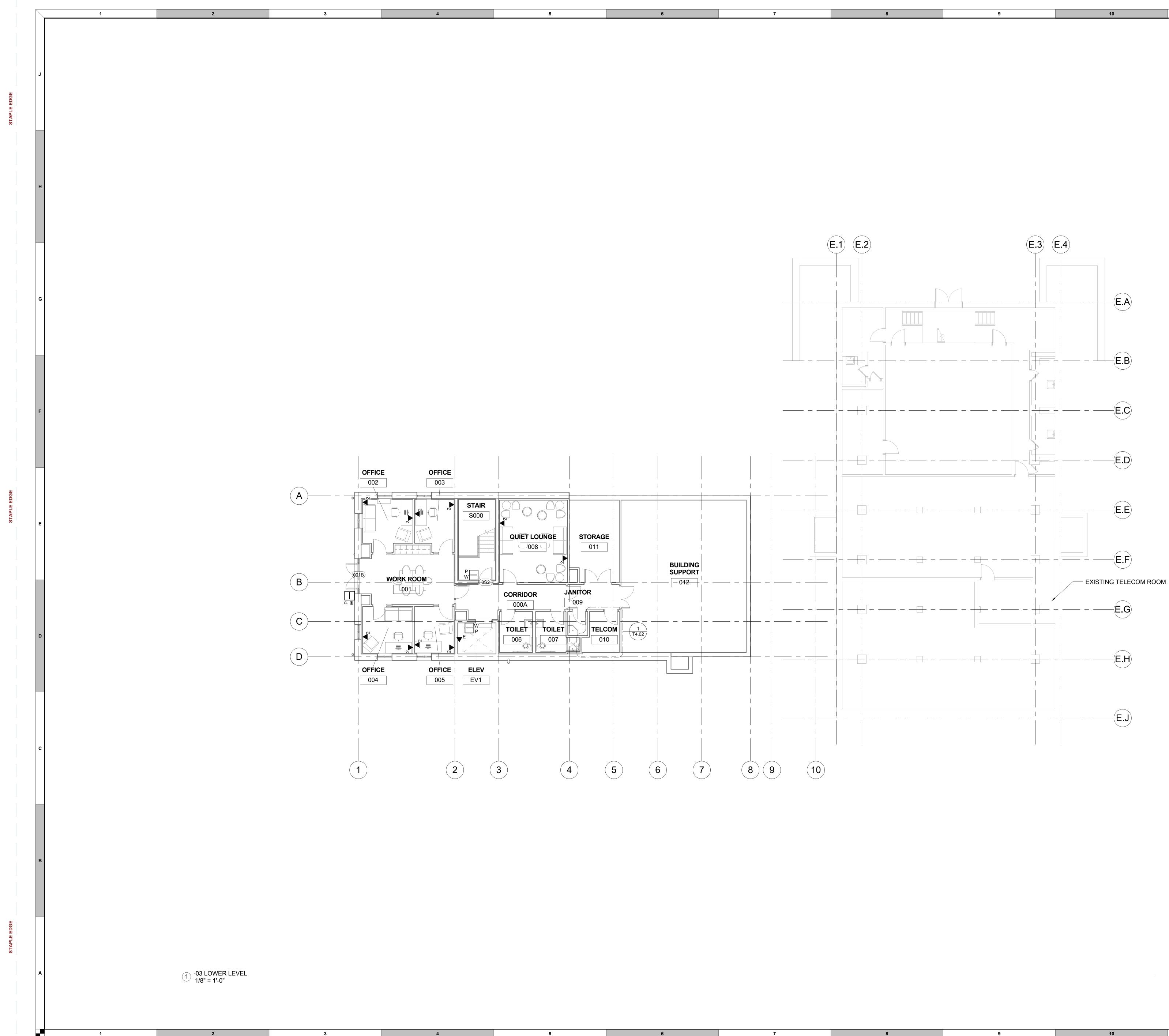
www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 M/E/P & FIRE PROTECTION ENGINEER


ARCHITECT


PROJECT TEAM

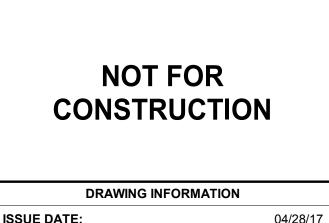
GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOLDSMITH INTERFAITH

CENTER

11

© COPYRIGHT AYERS SAINT GROSS, 2016


DRAWING NUMBER

TECHNOLOGY SYSTEMS FLOOR PLAN - LOWER LEVEL

DRAWING NAME

50% CONSTRUCTION DOCUMENTS

DRAWING INFORMATION						
ISSUE DATE:	04/28/17					
SCALE:	1/8" = 1'-0"					
JOB NO.:	21641.00					
DRAWN BY: JVS						
PROJECT DESIGN PHASE						

AYERS

	REVISIONS							
REV. #	DESCRIPTION	DATE						
<u> </u>								
	KEY PLAN							

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

www.morabitoconsultants.com

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286

MUELLER ASSOCIATES

410.347.8500 www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

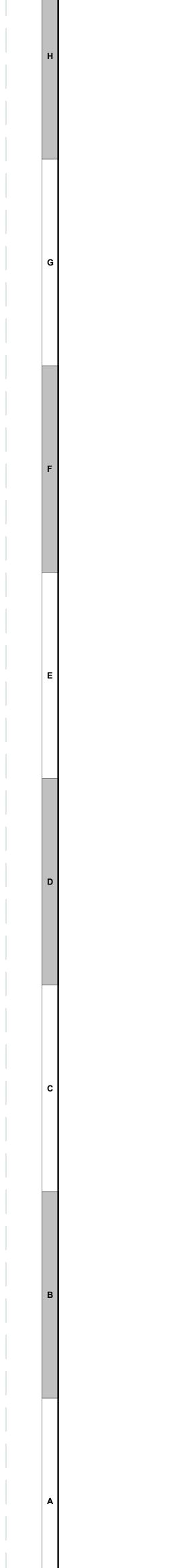
GOLDSMITH INTERFAITH

CENTER

GENERAL NOTES:

1

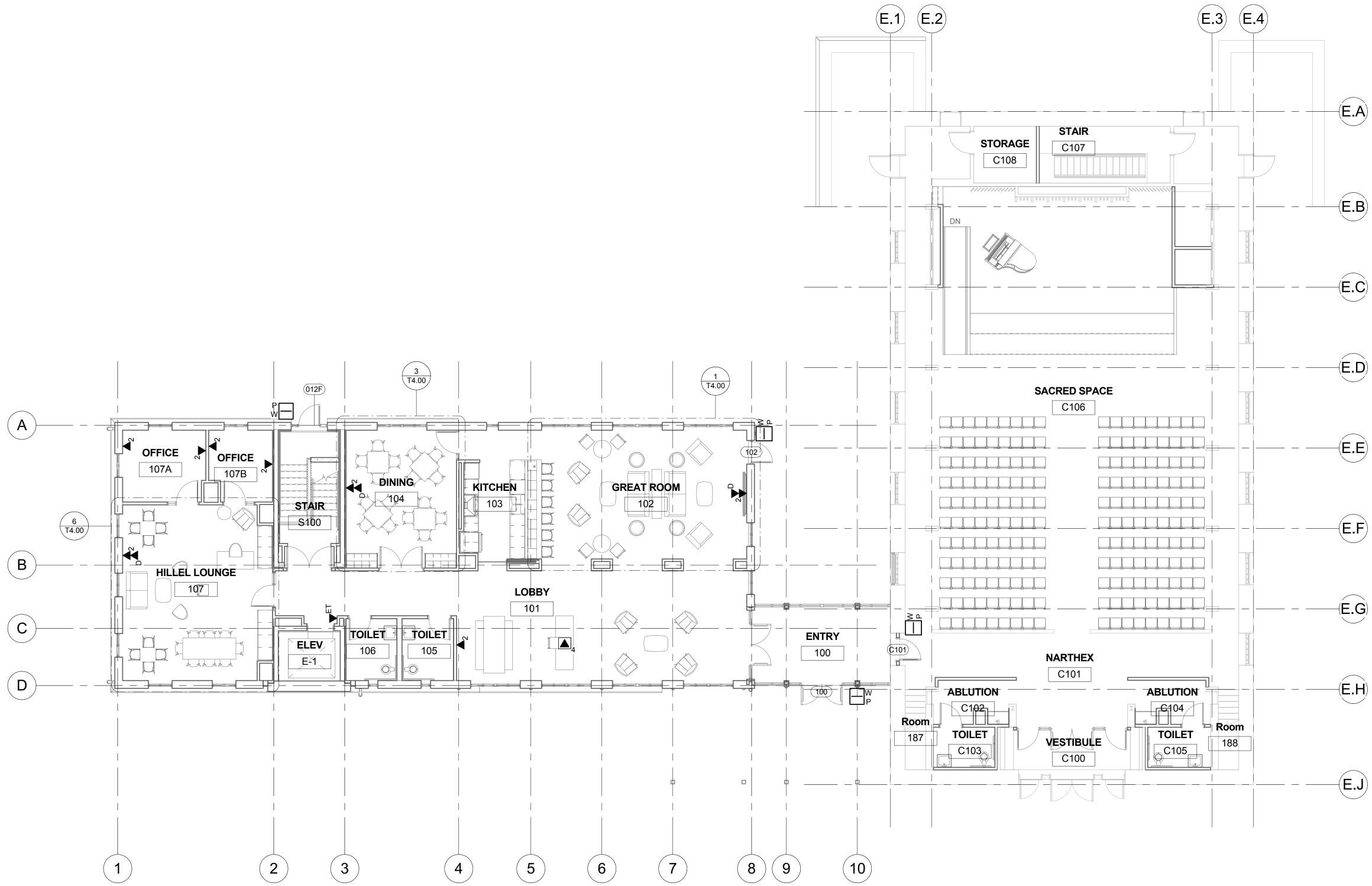
1. ALL CABLING ON THIS SHEET SHALL BE TERMINATED IN THE LOWER LEVEL TELECOM ROOM.


2

3

4

- SEE T4.00 FOR ADDITIONAL AUDIO VISUAL SYSTEM REQUIREMENTS. 2.
- PROVIDE TWO (2) SHURE QLXD14/SM35 WIRELESS MICROPHONE SYSTEMS FOR INTEGRATION 3. BY CONTRACTOR WITH EXISTING CHAPEL AUDIO SYSTEM.



1 00 GROUND LEVEL 1/8" = 1'-0"

3

4

5

6

5

7

6

7

8

9

10

11

9

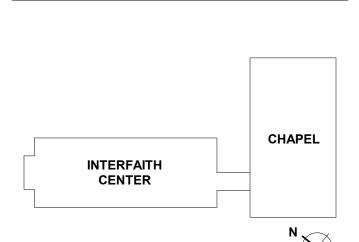
10

© COPYRIGHT AYERS SAINT GROSS, 2016

11

DRAWING NUMBER

TECHNOLOGY SYSTEMS FLOOR PLAN - LEVEL 1


DRAWING NAME

DOCUMENTS

DRAWING INFORMATION					
ISSUE DATE:	04/28/17				
SCALE:	1/8" = 1'-0"				
JOB NO.:	21641.00				
DRAWN BY: JVS					
PROJECT DESIGN PHASE					
50% CONSTRUCTION					

NOT FOR CONSTRUCTION

REVISIONS		
REV. #	DESCRIPTION	DATE
	KEY PLAN	

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152 410.467.2377

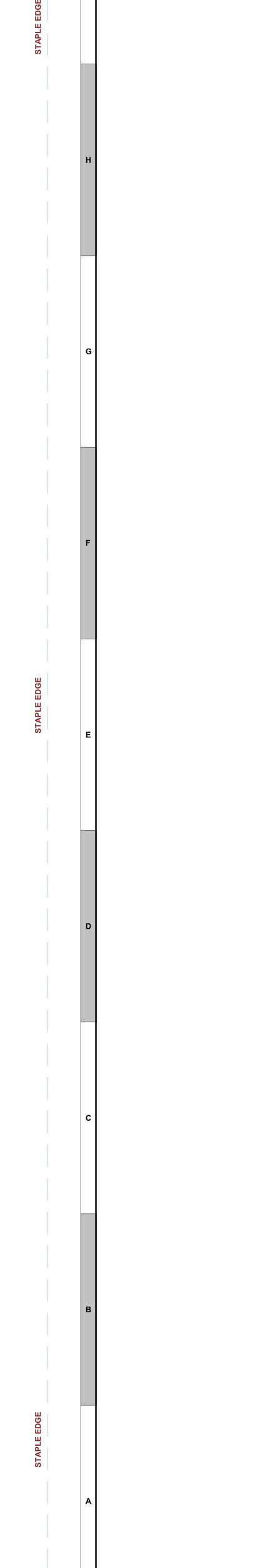
www.morabitoconsultants.com

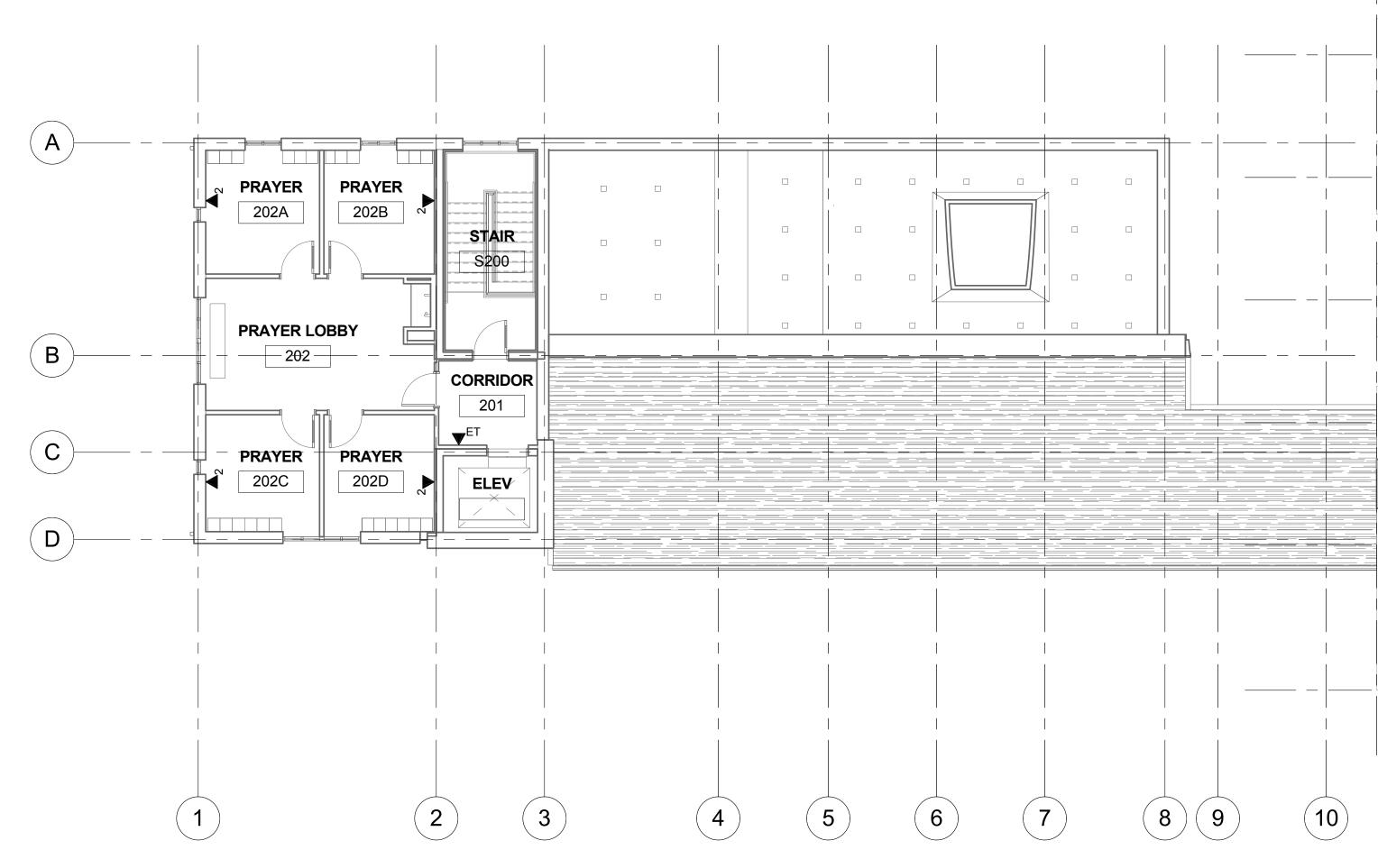
CIVIL ENGINEER

WBCM 300 EAST JOPPA ROAD, SUITE 200

M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com


GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204


PROJECT TEAM

ARCHITECT

GOLDSMITH INTERFAITH CENTER

6

7

8

1

1 <u>02 LEVEL 2</u> 1/8" = 1'-0"

2

3

4

GENERAL NOTES:

2. SEE T4.00 FOR ADDITIONAL AUDIO VISUAL SYSTEM REQUIREMENTS.

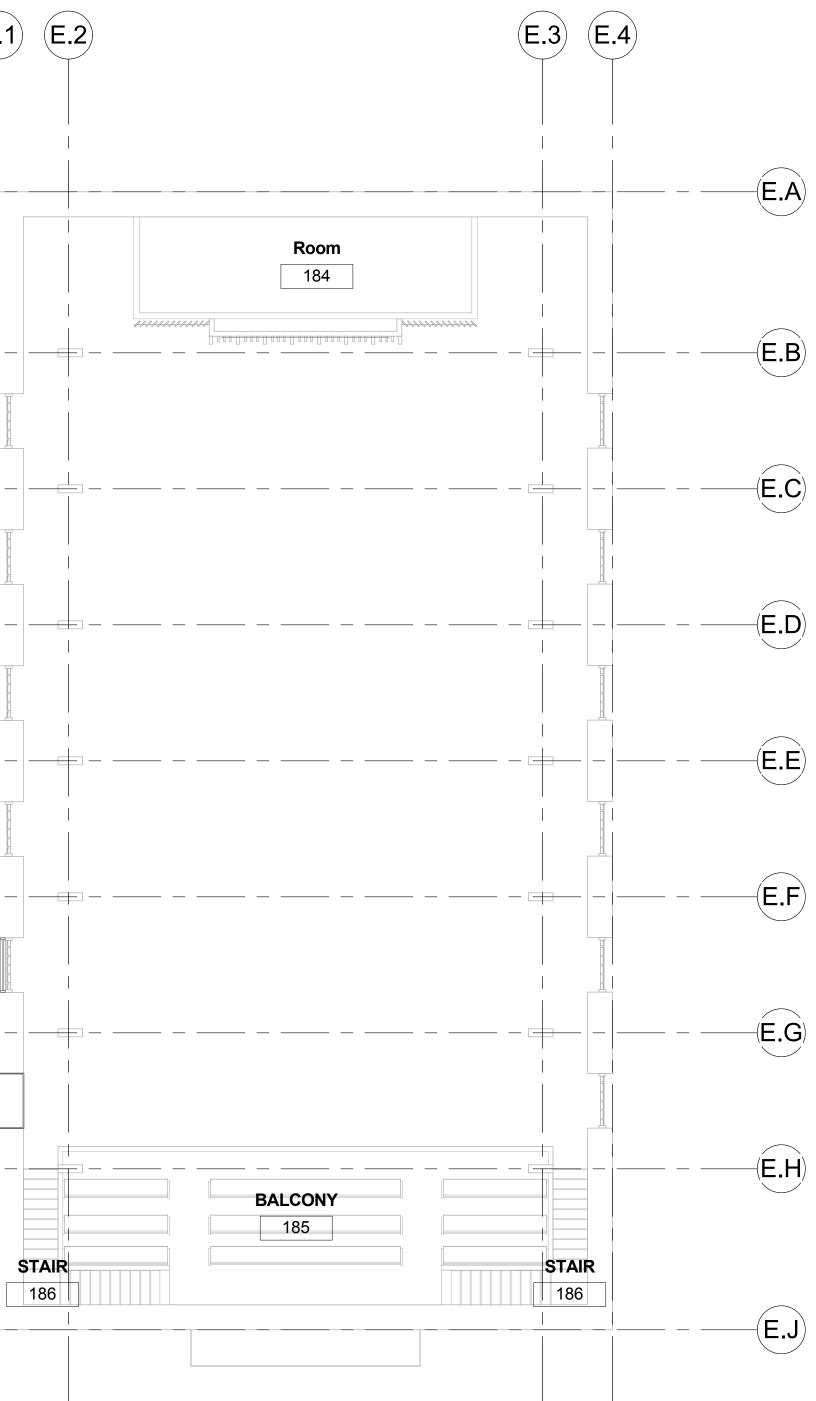
1

1. ALL CABLING ON THIS SHEET SHALL BE TERMINATED IN THE LOWER LEVEL TELECOM ROOM.

3

4

5


6

2

(E.1)

8

7

9

9

10

11

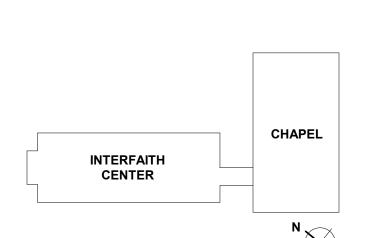
© COPYRIGHT AYERS SAINT GROSS, 2016

11

10

FLOOR PLAN - LEVEL 2

TECHNOLOGY SYSTEMS


DRAWING NAME

DOCUMENTS

DRAWING INFORMATION		
ISSUE DATE:	04/28/17	
SCALE:	1/8" = 1'-0"	
JOB NO.: 21641.00		
DRAWN BY: JVS		
PROJECT DESIGN PHASE		
50% CONSTRUCTION		

NOT FOR CONSTRUCTION

REVISIONS		
REV. #	DESCRIPTION	DATE
	KEY PLAN	

www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS

1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230 410.347.8500

SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700

LINTHICUM, MD 21090

MUELLER ASSOCIATES

www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER 1306 CONCOURSE DRIVE, SUITE 100

410.347.8500

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

ARCHITECT

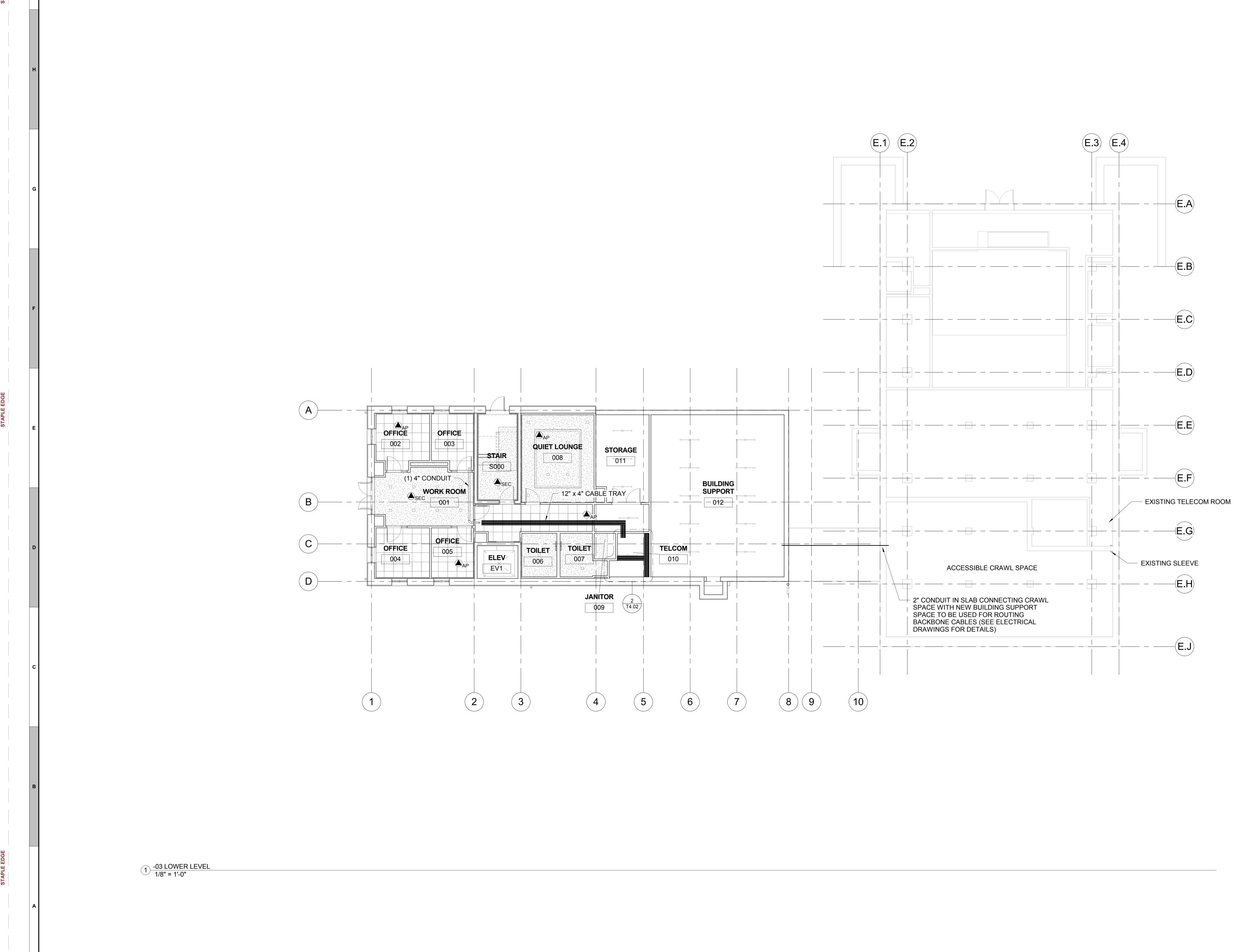
PROJECT TEAM

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOUCHER —college—

GOLDSMITH INTERFAITH CENTER

1. PRIOR TO INSTALLING ANY CABLES OR ASSOCIATED PATHWAYS FOR WIRELESS ACCESS POINTS, CONTRACTOR SHALL REQUEST A HEAT MAP SURVEY FROM SU DOIT TO CONFIRM EXACT LOCATIONS OF WIRELESS ACCESS POINTS.


2

3

3

2

1

5

4

8

9

9

10

11

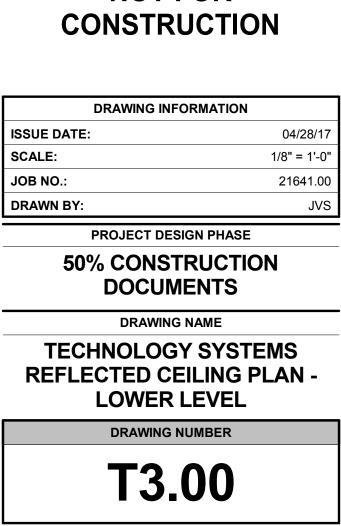
6

4

5

7

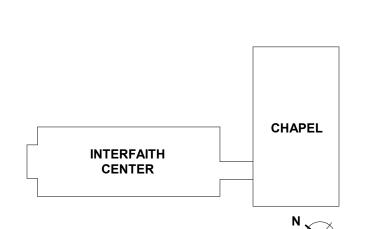
8


6

7

© COPYRIGHT AYERS SAINT GROSS, 2016

11


10

NOT FOR

ARCHITECTS + PLANNERS

REVISIONS		
REV. #	DESCRIPTION	DATE
	KEY PLAN	

410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377

www.morabitoconsultants.com

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

PROJECT TEAM ARCHITECT AYERS SAINT GROSS

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOLDSMITH INTERFAITH CENTER

GENERAL NOTES:

2.

1

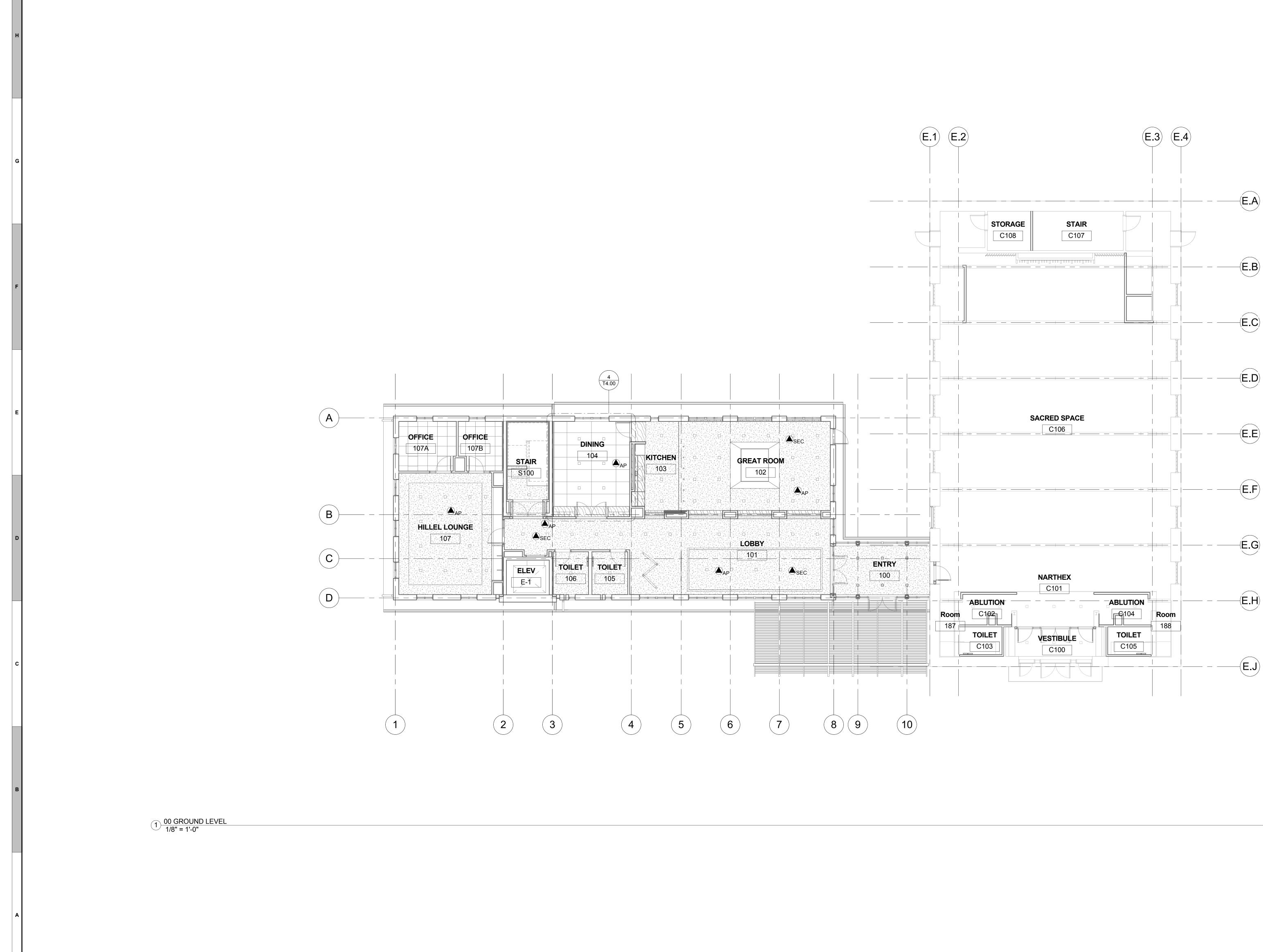
1. ALL CABLING ON THIS SHEET SHALL BE TERMINATED IN THE LOWER LEVEL TELECOM ROOM.

2

3

3

2


1

4

5

6

PRIOR TO INSTALLING ANY CABLES OR ASSOCIATED PATHWAYS FOR WIRELESS ACCESS POINTS, CONTRACTOR SHALL REQUEST A HEAT MAP SURVEY FROM SU DOIT TO CONFIRM EXACT LOCATIONS OF WIRELESS ACCESS POINTS.

5

6

4

7

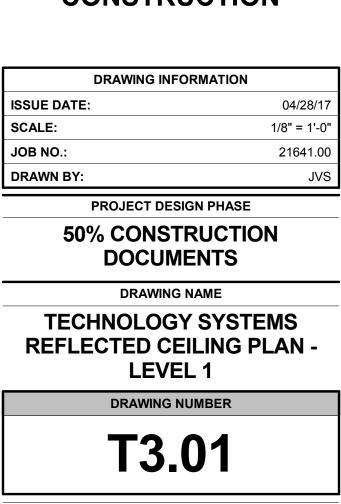
8

9

9

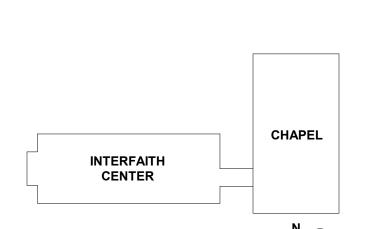
10

11


7

8

© COPYRIGHT AYERS SAINT GROSS, 2016


11

10

NOT FOR CONSTRUCTION

REVISIONS		
REV. #	DESCRIPTION	DATE
<u> </u>		
	KEY PLAN	

www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

STRUCTURAL ENGINEER MORABITO CONSULTANTS SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

CIVIL ENGINEER

WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286

410.512.4500

www.wbcm.com

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE, MD 21230

410.347.8500

www.muellerassoc.com

410.646.4500 952 RIDGEBROOK ROAD, SUITE 1700

1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES

PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOLDSMITH INTERFAITH CENTER

GOUCHER —college—

GENERAL NOTES:

1

1. ALL CABLING ON THIS SHEET SHALL BE TERMINATED IN THE LOWER LEVEL TELECOM ROOM.

2

3

3

2

4

5

6

7

8

4

5

6

7

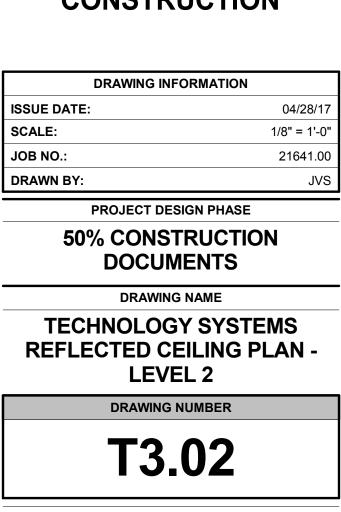
8

9

9

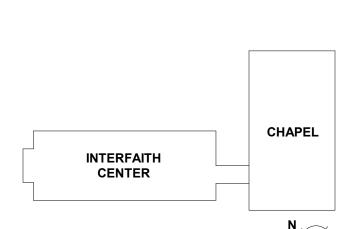
10

PRIOR TO INSTALLING ANY CABLES OR ASSOCIATED PATHWAYS FOR WIRELESS ACCESS 2. POINTS, CONTRACTOR SHALL REQUEST A HEAT MAP SURVEY FROM SU DOIT TO CONFIRM EXACT LOCATIONS OF WIRELESS ACCESS POINTS.


1

11

11


10

© COPYRIGHT AYERS SAINT GROSS, 2016

NOT FOR CONSTRUCTION

	REVISIONS		
REV. #	DESCRIPTION	DATE	
	KEY PLAN		

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

www.spexsys.com

MUELLER ASSOCIATES 1306 CONCOURSE DRIVE, SUITE 100 LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700

SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

> **CIVIL ENGINEER** WBCM

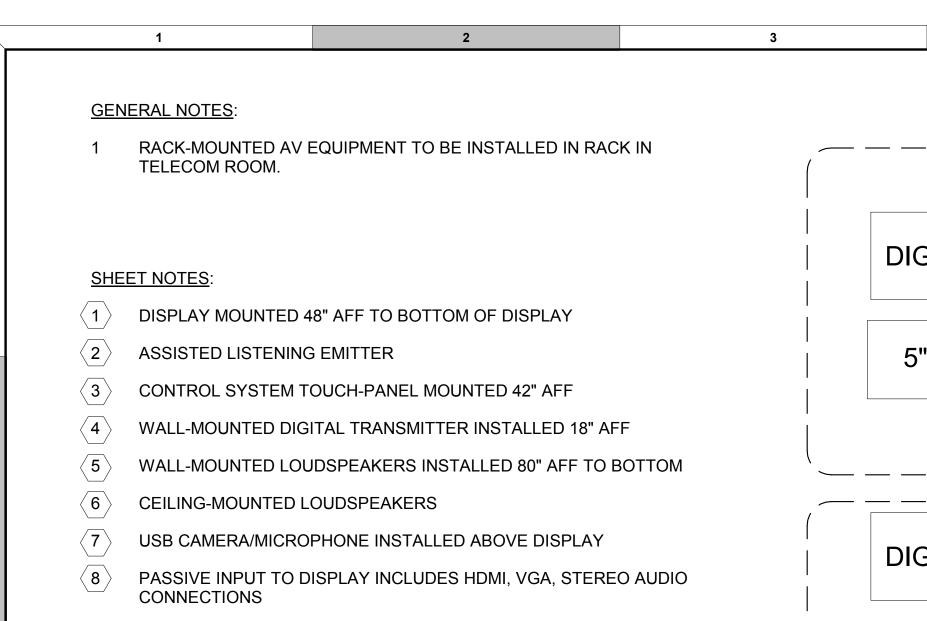
300 EAST JOPPA ROAD, SUITE 200

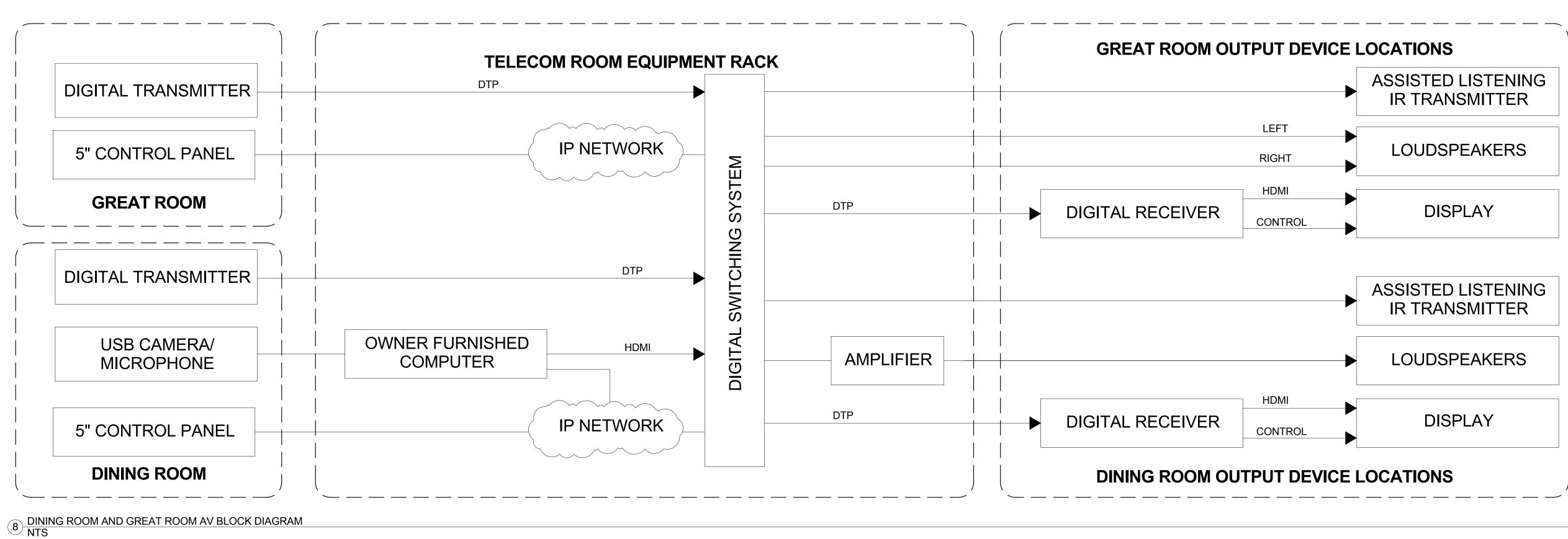
BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

LANDSCAPE ARCHITECT

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

M/E/P & FIRE PROTECTION ENGINEER

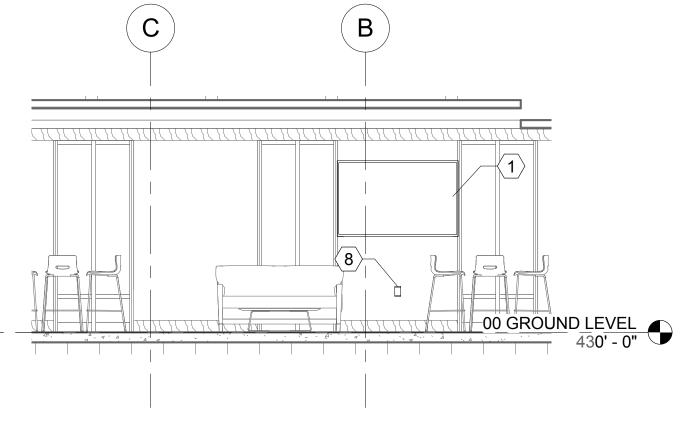

www.asg-architects.com


PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

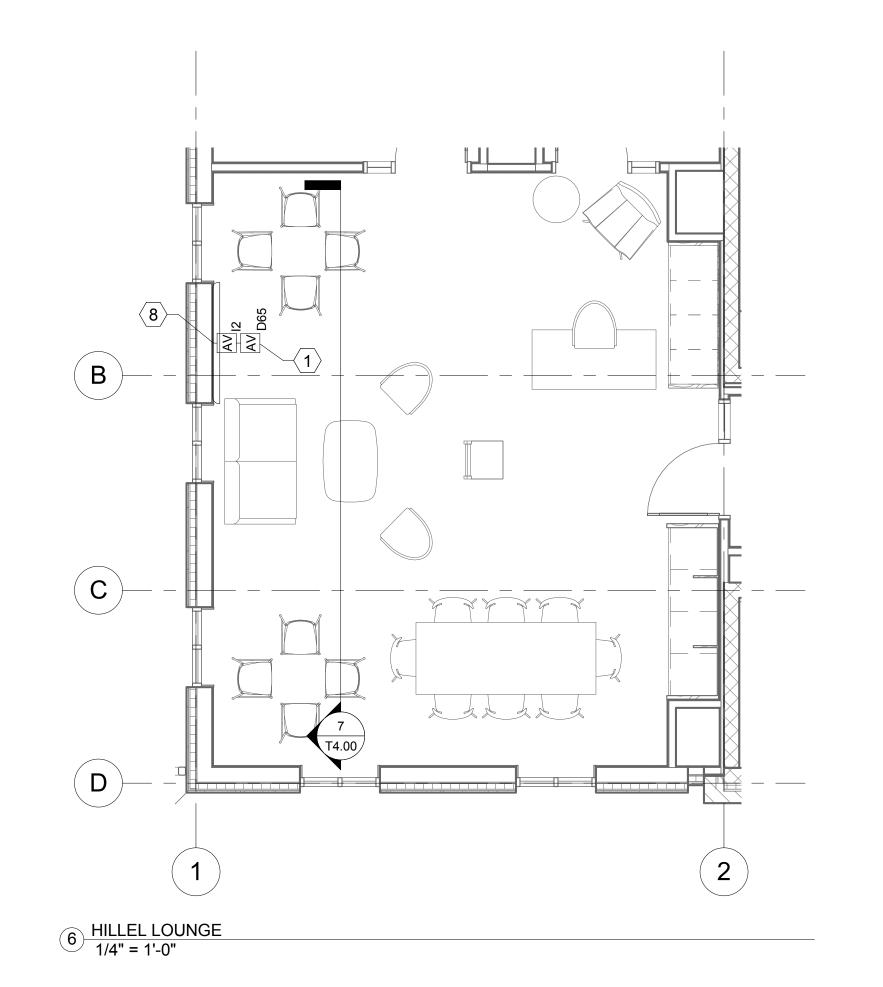
CENTER GOUCHER COLLEGE 1021 DULANEY VALLEY RD BALTIMORE MD 21204

GOLDSMITH INTERFAITH

GOUCHER —college—

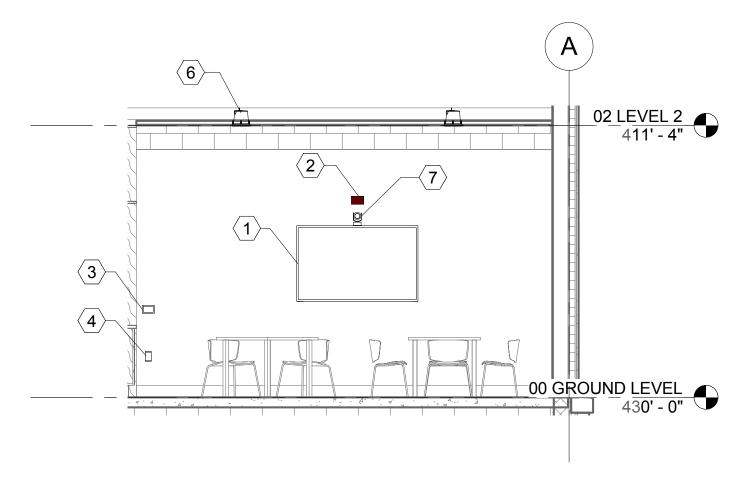


8

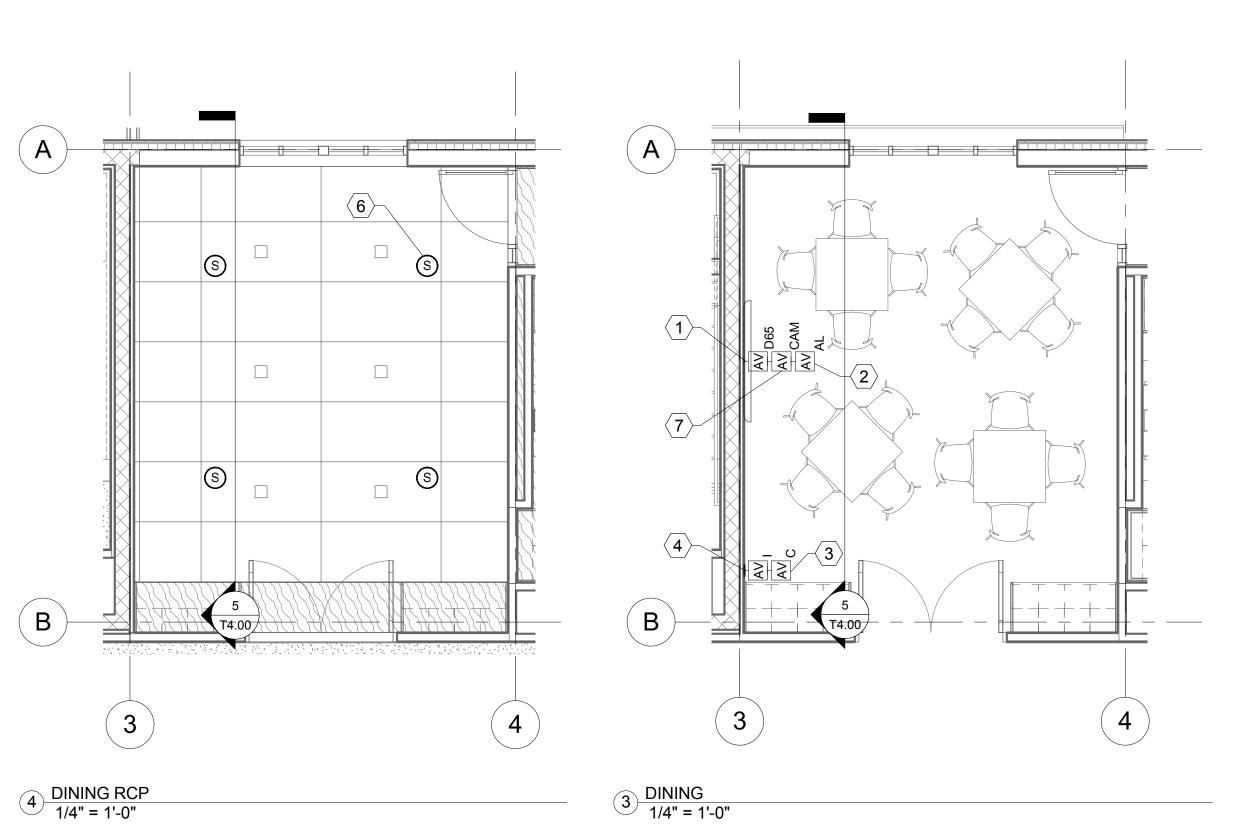

9

10

11

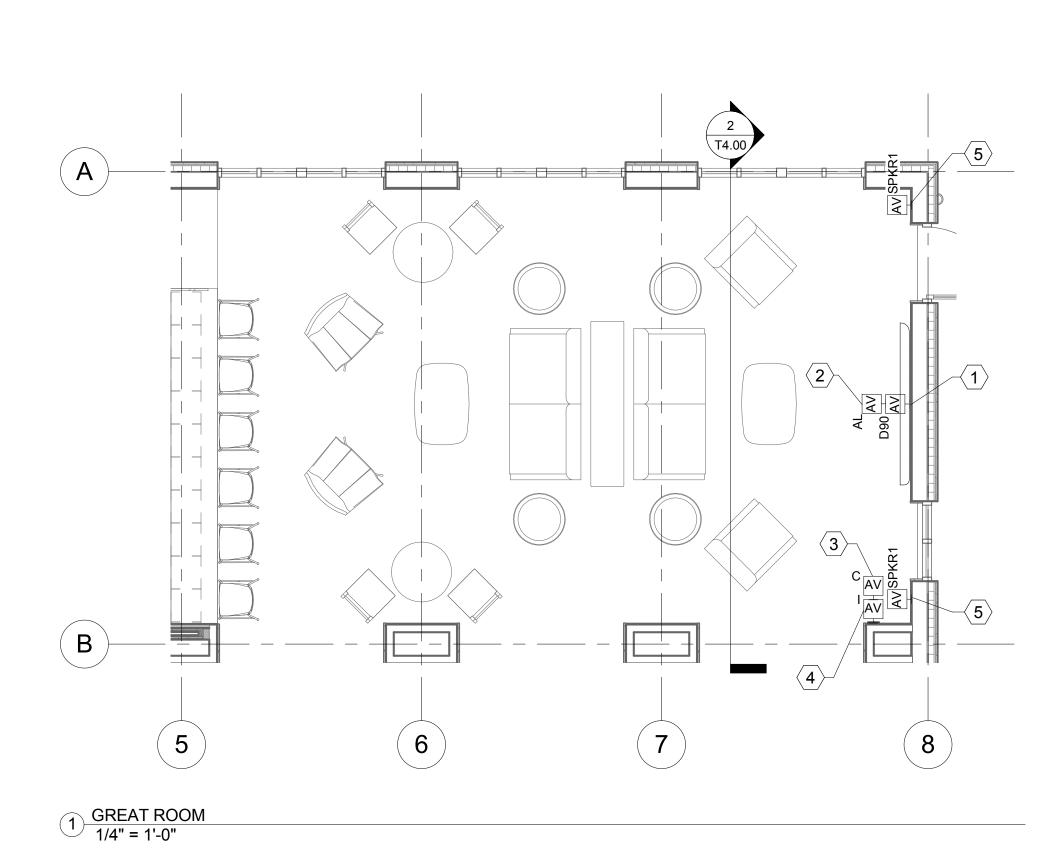

3

4


4

5

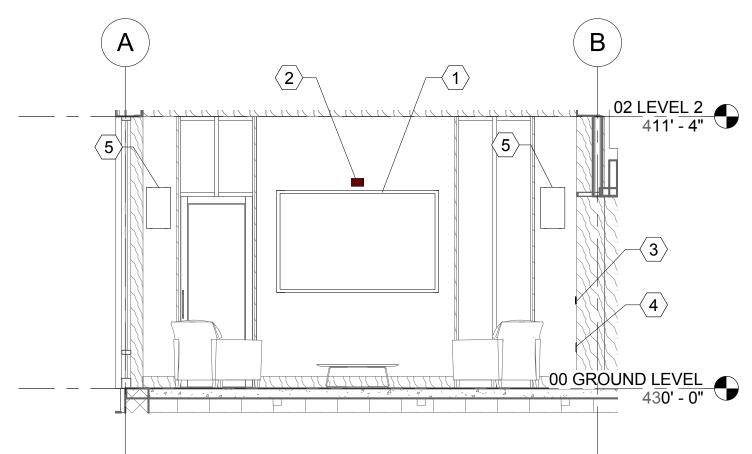
6


 $5 \frac{\text{DINING WALL ELEVATION}}{1/4" = 1'-0"}$

5

6

7



10

11

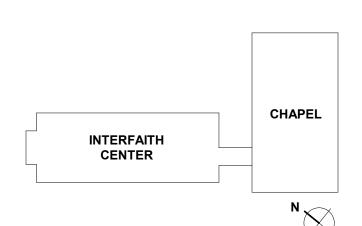
9

© COPYRIGHT AYERS SAINT GROSS, 2016

DRAWING NUMBER

TECHNOLOGY SYSTEMS - AV DETAILS

DRAWING NAME


50% CONSTRUCTION DOCUMENTS

DRAWING INFORMATION ISSUE DATE: 04/28/17 SCALE: As indicated JOB NO.: 21641.00 DRAWN BY: JVS PROJECT DESIGN PHASE

NOT FOR CONSTRUCTION

REVISIONS		
REV. #	DESCRIPTION	DATE
	KEY PLAN	

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER MORABITO CONSULTANTS

952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152

410.467.2377

www.morabitoconsultants.com

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200

BALTIMORE, MD 21286 410.512.4500 www.wbcm.com

1306 CONCOURSE DRIVE, SUITE 100

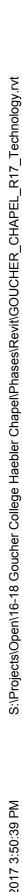
MUELLER ASSOCIATES

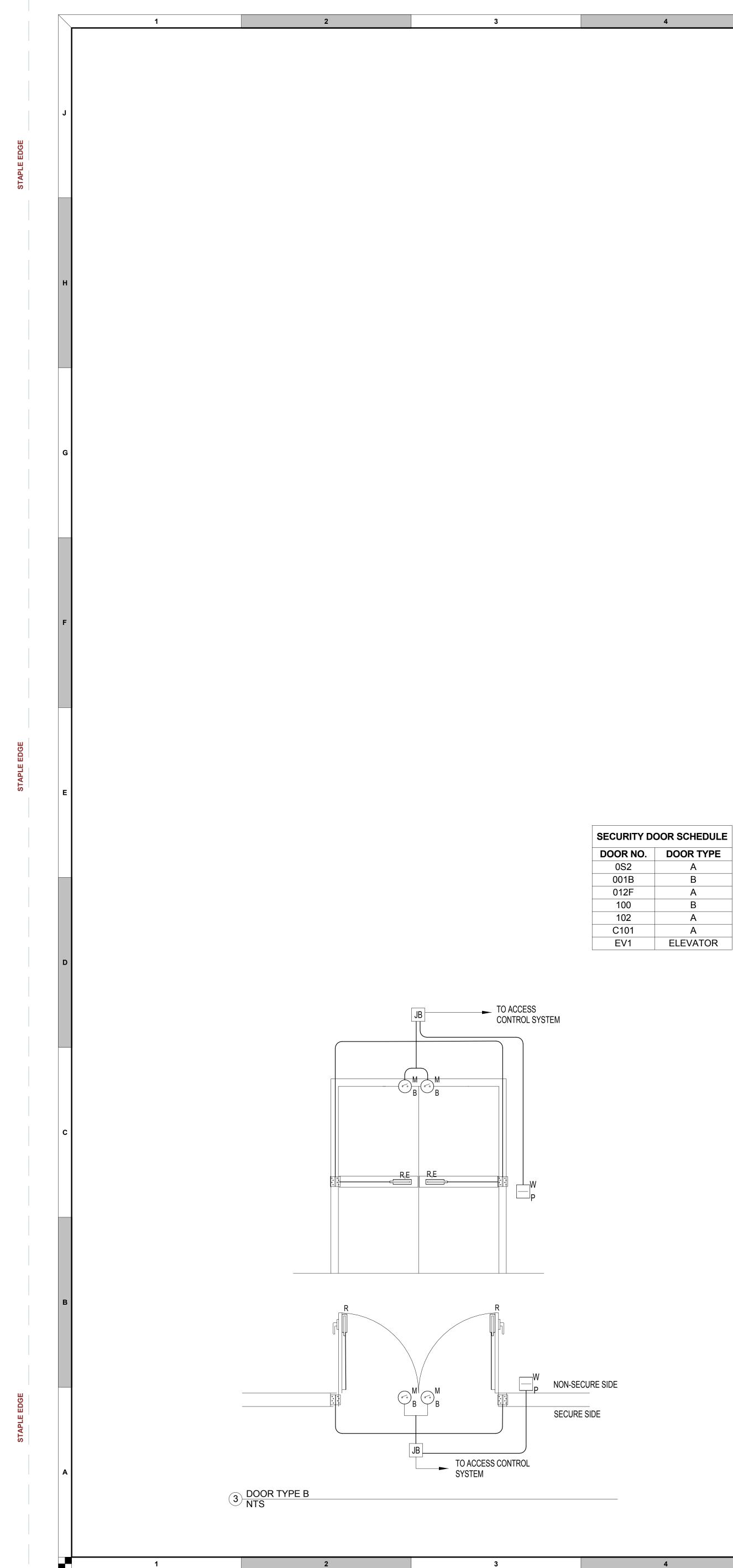
www.asg-architects.com

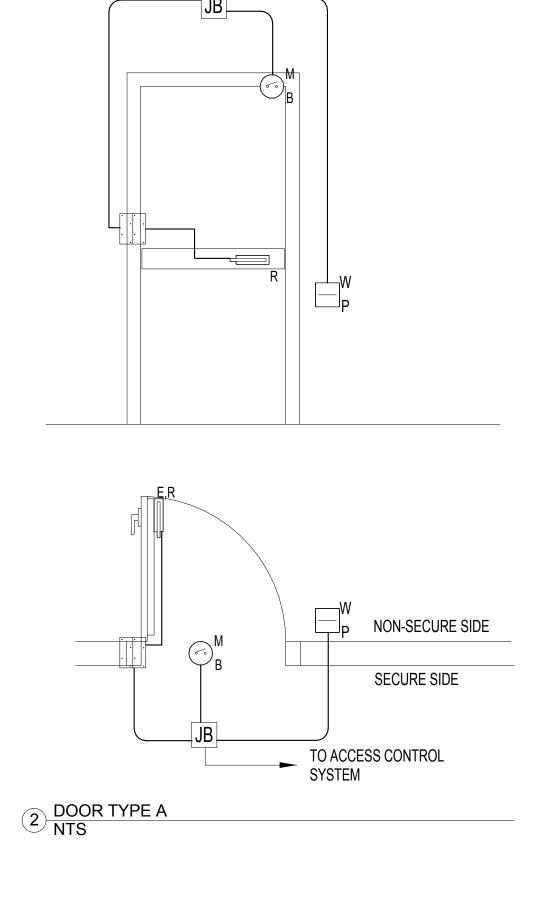
1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500 M/E/P & FIRE PROTECTION ENGINEER

ARCHITECT AYERS SAINT GROSS

PROJECT TEAM


BALTIMORE MD 21204


GOUCHER COLLEGE 1021 DULANEY VALLEY RD


CENTER

GOLDSMITH INTERFAITH

7

5

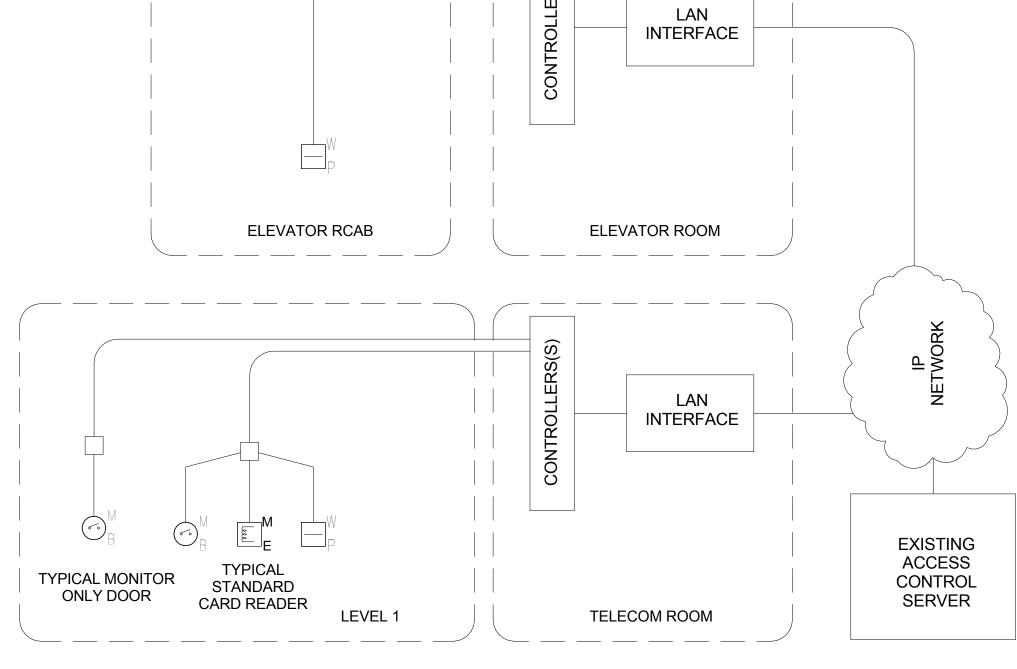
TO ACCESS CONTROL SYSTEM

5

6

7

8


9

R NO.	DOOR TYPE	
S2	A	
)1B	В	
2F	A	
00	В	
02	A	
101	A	
V1	ELEVATOR	

4

8

10

9

10

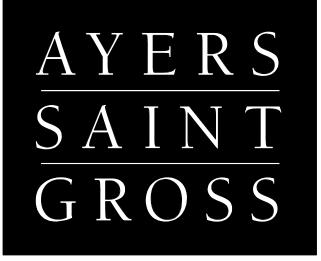
11

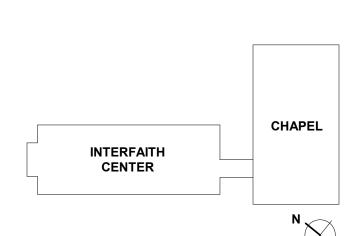
© COPYRIGHT AYERS SAINT GROSS, 2016

11

DRAWING NUMBER

TECHNOLOGY SYSTEMS -SECURITY DETAILS


DRAWING NAME


50% CONSTRUCTION DOCUMENTS

DRAWING INFORMATION		
ISSUE DATE:	04/28/17	
SCALE:	12" = 1'-0"	
JOB NO.:	21641.00	
DRAWN BY: JVS		
PROJECT DESIGN PHASE		
50% CONSTRUCTION		

NOT FOR CONSTRUCTION

ARCHITECTS + PLANNERS

REVISIONS		
REV. #	DESCRIPTION	DATE
	KEY PLAN	

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390 www.spexsys.com

www.asg-architects.com

CIVIL ENGINEER WBCM 300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286 410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230 410.347.8500

MUELLER ASSOCIATES LINTHICUM, MD 21090 410.646.4500 www.muellerassoc.com STRUCTURAL ENGINEER

MORABITO CONSULTANTS 952 RIDGEBROOK ROAD, SUITE 1700 SPARKS, MD 21152 410.467.2377 www.morabitoconsultants.com

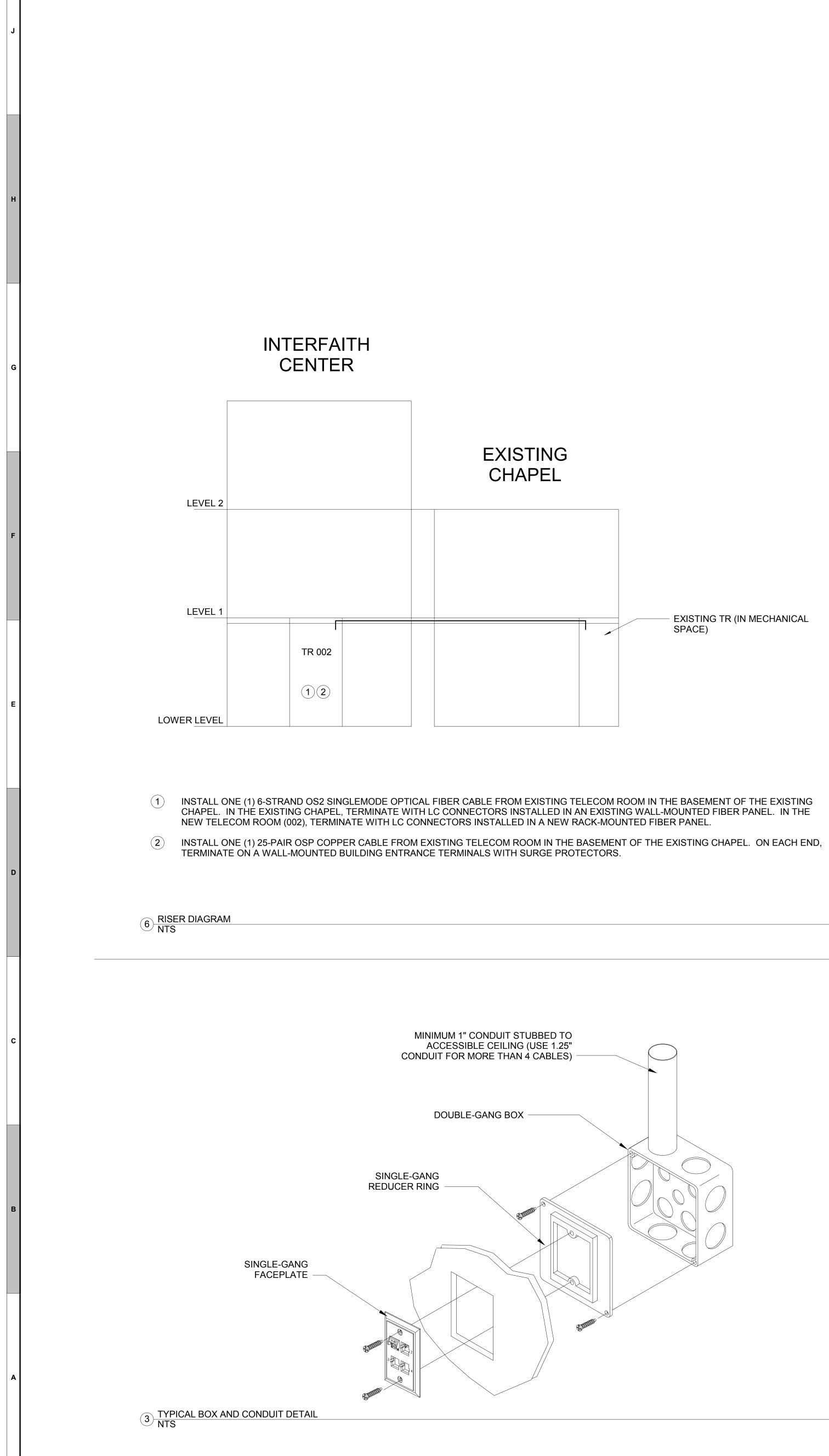
www.asg-architects.com

410.347.8500 1306 CONCOURSE DRIVE, SUITE 100

M/E/P & FIRE PROTECTION ENGINEER

1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

AYERS SAINT GROSS


ARCHITECT

PROJECT TEAM

BALTIMORE MD 21204

GOLDSMITH INTERFAITH CENTER GOUCHER COLLEGE 1021 DULANEY VALLEY RD

GOUCHER —college—

2

1

2

3

- EXISTING TR (IN MECHANICAL

4

5

5 TR RACK ELEVATION NTS

ET SEC

- ONE (1) PLUG (MALE)

4 FACEPLATE DETAILS NTS

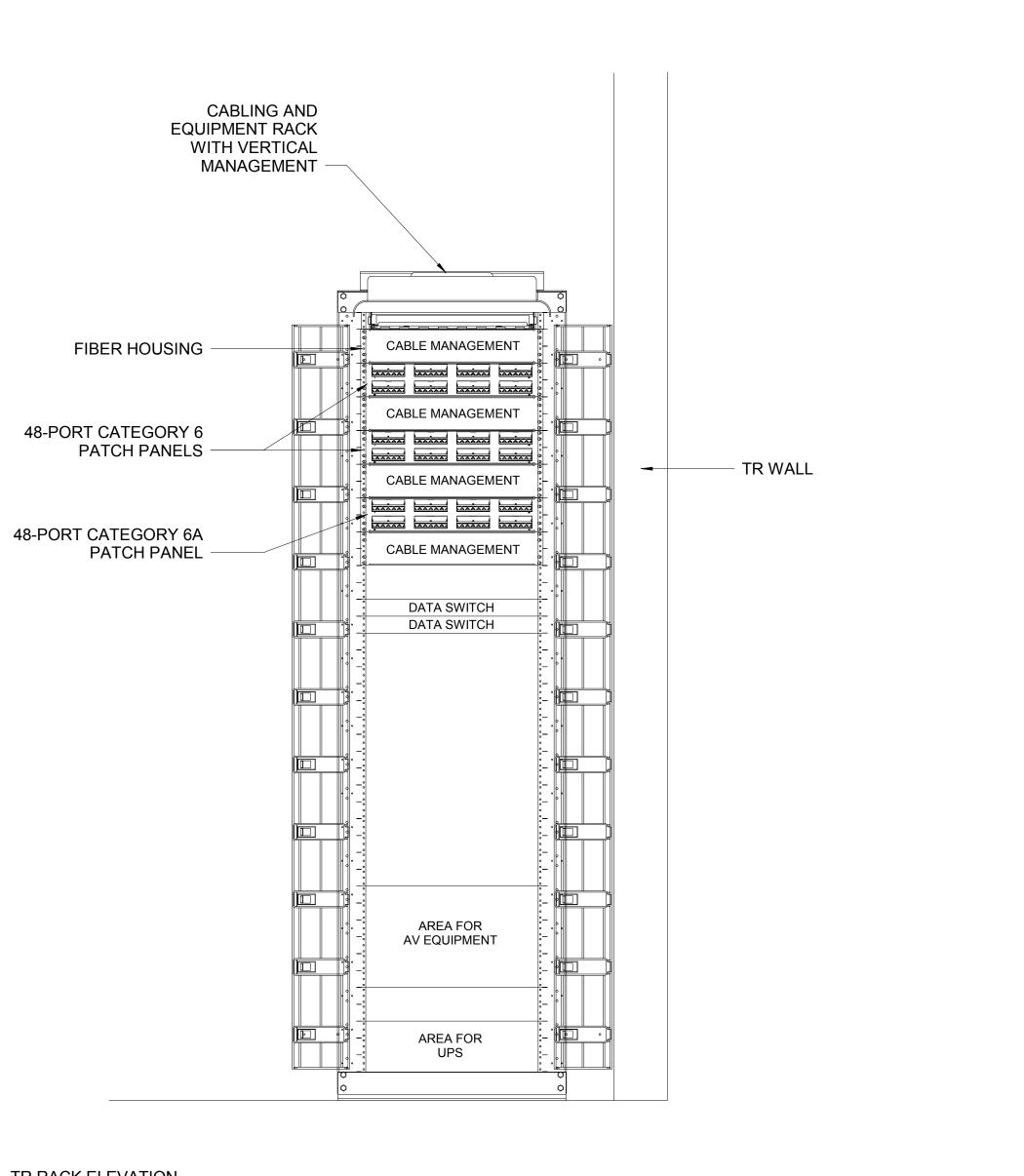
C (D) 5

2 TELECOM ROOM 002 RCP 1/4" = 1'-0"

7

8

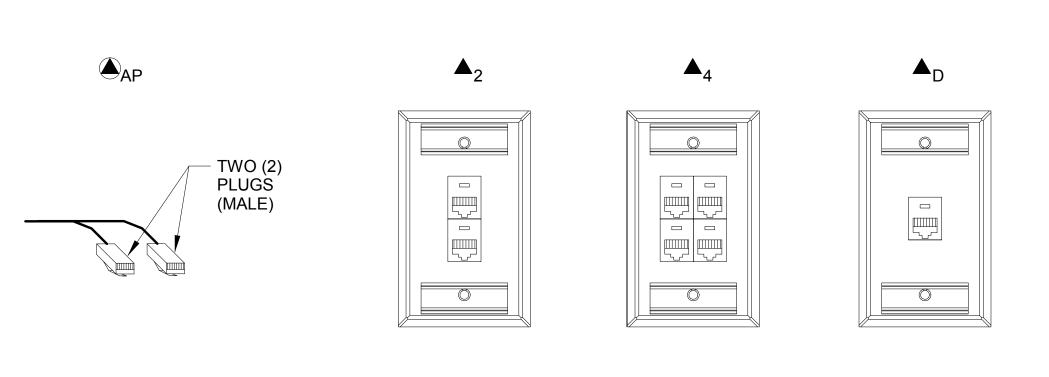
6

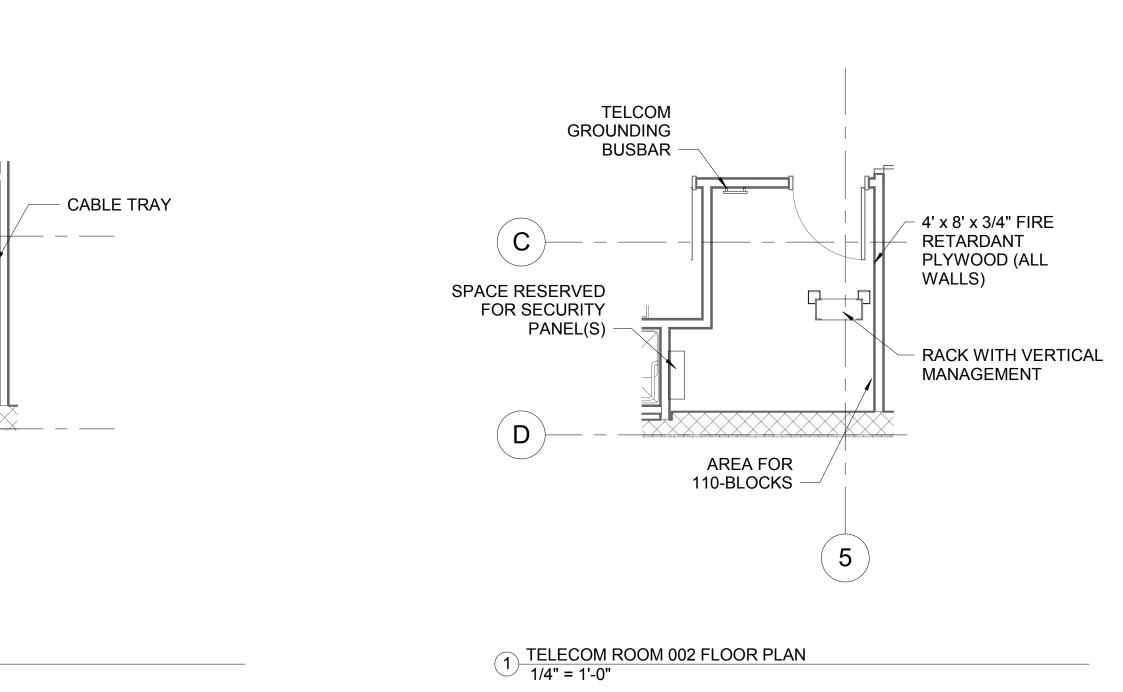

5

4

6

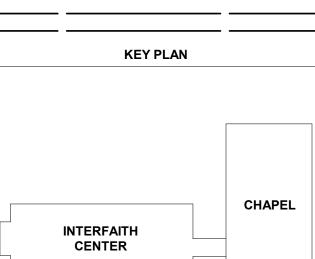
7

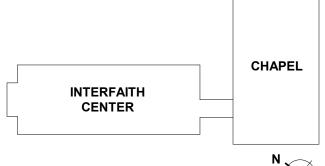

8

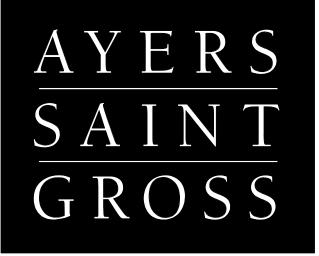


9

10


11





10

9

ARCHITECTS + PLANNERS

NOT FOR CONSTRUCTION

DRAWING INFORMATION		
ISSUE DATE:	04/28/17	
SCALE:	As indicated	
JOB NO.:	21641.00	
DRAWN BY: JV:		
PROJECT DESIGN PHASE		
50% CONSTRUCTION DOCUMENTS		

TECHNOLOGY SYSTEMS -TELECOM CABLING DETAILS

DRAWING NAME

© COPYRIGHT AYERS SAINT GROSS, 2016

11

M/E/P & FIRE PROTECTION ENGINEER MUELLER ASSOCIATES LINTHICUM, MD 21090

1306 CONCOURSE DRIVE, SUITE 100

WBCM

300 EAST JOPPA ROAD, SUITE 200 BALTIMORE, MD 21286

410.512.4500 www.wbcm.com LANDSCAPE ARCHITECT

BALTIMORE, MD 21230 410.347.8500 www.asg-architects.com

IT / AV / SECURITY SPEXSYS 7257 PARKWAY DRIVE, SUITE 260 HANOVER, MD 21076 410.712.0390

www.spexsys.com

REVISIONS

DATE

DESCRIPTION

REV. #

AYERS SAINT GROSS 1040 HULL STREET, SUITE 100

BALTIMORE MD 21204 PROJECT TEAM ARCHITECT AYERS SAINT GROSS 1040 HULL STREET, SUITE 100 BALTIMORE, MD 21230

410.347.8500

www.asg-architects.com

GOLDSMITH INTERFAITH

CENTER

GOUCHER COLLEGE 1021 DULANEY VALLEY RD

GOUCHER —college—